【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第12讲《代数式全章复习与测试》同步讲学案
展开第12讲 代数式全章复习与测试
【学习目标】
1. 理解并掌握单项式与多项式的相关概念;
2. 理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;
【基础知识】
1.代数式
代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.
例如:ax+2b,﹣13,2b23,a+2等.
注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.
②可以有绝对值.例如:|x|,|﹣2.25|等.
2.列代数式
(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
(2)列代数式五点注意:①仔细辨别词义. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分. ②分清数量关系.要正确列代数式,只有分清数量之间的关系. ③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用. ⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.
【规律方法】列代数式应该注意的四个问题
1.在同一个式子或具体问题中,每一个字母只能代表一个量.
2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.
3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.
4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.
3.代数式求值
(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
题型简单总结以下三种:
①已知条件不化简,所给代数式化简;
②已知条件化简,所给代数式不化简;
③已知条件和所给代数式都要化简.
4.同类项
(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
同类项中所含字母可以看成是数字、单项式、多项式等.
(2)注意事项:
①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;
②同类项与系数的大小无关;
③同类项与它们所含的字母顺序无关;
④所有常数项都是同类项.
5.合并同类项
(1)定义:把多项式中同类项合成一项,叫做合并同类项.
(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
6.去括号与添括号
(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.
说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.
(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.
添括号与去括号可互相检验.
7.规律型:数字的变化类
探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.
(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.
(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.
8.规律型:图形的变化类
图形的变化类的规律题
首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
9.整式
(1)概念:单项式和多项式统称为整式.
他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.
(2)规律方法总结:
①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.
②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.
10.单项式
(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.
用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.
(2)单项式的系数、次数
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.
11.多项式
(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.
12.整式的加减
(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.
(2)整式的加减实质上就是合并同类项.
(3)整式加减的应用:
①认真审题,弄清已知和未知的关系;
②根据题意列出算式;
③计算结果,根据结果解答实际问题.
【规律方法】整式的加减步骤及注意问题
1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.
2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.
13.整式的加减—化简求值
给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.
【考点剖析】
一.代数式(共1小题)
1.(2021秋•宽城县期末)代数式a2﹣的正确解释是( )
A.a的平方与b的倒数的差 B.a与b的倒数的差的平方
C.a的平方与b的差的倒数 D.a与b的差的平方的倒数
二.列代数式(共1小题)
2.(2022•南京一模)李奶奶买了一筐草莓,连筐共akg,其中筐1kg.将草莓平均分给4位小朋友,每位小朋友可分得( )
A.kg B.(﹣1)kg C.kg D.kg
三.代数式求值(共1小题)
3.(2021秋•广陵区期末)已知a﹣2b2=3,则2022﹣2a+4b2的值是( )
A.2016 B.2028 C.2019 D.2025
四.同类项(共1小题)
4.(2022•姑苏区一模)若单项式2xym+1与单项式是同类项,则m﹣n= .
五.合并同类项(共1小题)
5.(2021秋•射阳县校级期末)若3xm+5y2与23x8yn+4的差是一个单项式,则代数式nm的值为( )
A.﹣8 B.6 C.﹣6 D.8
六.去括号与添括号(共1小题)
6.(2021秋•海门市期末)计算﹣(4a﹣5b),结果是( )
A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b
七.规律型:数字的变化类(共1小题)
7.(2022春•邗江区校级月考)我们将如图所示的两种排列形式的点数分别称作“三角形点数”(如1,3,6,10…)和“正方形点数”(如1,4,9,16,…).在小于300的点数中,设最大的“三角形点数”为m,最大的“正方形点数”为n,则m+n的值为( )
A.589 B.565 C.556 D.532
八.规律型:图形的变化类(共1小题)
8.(2021秋•宣化区期末)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,记第1个图形中总的点数为S2=3,第2个图形中总的点数为S3=6,依次为S4=9,S5=12.以下说法错误的是( )
A.S7=18 B.S11=30
C.若Sn=60,则n=21 D.若Sn+Sn+1=57,则n=11
九.整式(共1小题)
9.(2021秋•襄都区校级期末)下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有( )
A.3个 B.4个 C.6个 D.7个
一十.单项式(共1小题)
10.(2021秋•崇川区期末)关于单项式的说法,正确的是( )
A.系数为2,次数是2 B.系数为,次数是3
C.系数为,次数是2 D.系数为,次数是3
一十一.多项式(共1小题)
11.(2021秋•惠山区期末)下列说法错误的是( )
A.2x2﹣3xy﹣1是二次三项式
B.﹣x+1不是单项式
C.﹣的系数是﹣
D.﹣22xa3b2的次数是6
一十二.整式的加减(共2小题)
12.(2021秋•宝应县期末)化简:
(1)﹣12x+6y﹣3+10x﹣2﹣y; (2)7x+4(x2﹣2)﹣2(2x2﹣x+3).
13.(2021秋•宝应县期末)已知:A﹣B=2a2﹣3ab,且B=﹣a2+6ab+1.
(1)求A等于多少?
(2)若3x2ayb+1与x2ya+3是同类项,求A的值.
一十三.整式的加减—化简求值(共1小题)
14.(2021秋•滨海县期末)先化简,再求值:3(x2y﹣2y2)﹣2(x2y﹣3y2),其中x=﹣3,y=2.
【过关检测】
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)(2021秋•溧水区期中)下列各式中,合并同类项正确的是( )
A.﹣ab﹣ab=0 B.5y2﹣2y2=3
C.﹣p﹣p﹣p=﹣3p3 D.3x2y﹣4yx2=﹣x2y
2.(3分)(2021秋•惠山区期末)用代数式表示:一个两位整数,个位数字是a,十位数字是b,则这个两位数应表示为( )
A.10a+b B.10b+a C.b+a D.a+b
3.(3分)(2021秋•毕节市期末)下列运算,结果正确的是( )
A.7m﹣5m=2 B.3x+2y=5xy
C.2ab﹣2ba=0 D.2x3+3x3=5x6
4.(3分)(2021秋•靖江市期中)下列各组中的两项,不是同类项的是( )
A.35与53 B.﹣x2y与2yx2 C.2πr与π2r D.a2b与﹣3ab2
5.(3分)(2021秋•泗洪县期中)单项式﹣3πxy2的系数是( )
A.﹣3 B.2 C.﹣3π D.﹣6
6.(3分)(2021秋•邗江区校级期中)当x=﹣3时,多项式ax5+bx3+cx﹣5的值是7,那么当x=3时,它的值是( )
A.﹣3 B.﹣7 C.7 D.﹣17
7.(3分)(2021秋•邗江区期中)下列各题结果正确的有( )
①3x+3y=6xy;②7m﹣5m=2m;③16y2+9y2=25y4;④19a2b﹣6ab2=13a2b.
A.1个 B.2个 C.3个 D.4个
8.(3分)(2021秋•六合区期中)某校组织初一年级学生外出旅游,景点电瓶车有8座的和12座的两种.若租用8座的电瓶车x辆,则余下6人无座位;若租用12座的电瓶车则可少租用1辆,且最后一辆电瓶车还没坐满,则乘坐最后一辆12座电瓶车的人数是( )
A.(30﹣4x)人 B.(6﹣4x)人 C.(18﹣4x)人 D.(18﹣8x)人
9.(3分)(2021秋•鼓楼区期中)多项式2x2﹣x﹣3的项分别是( )
A.x2,x,3 B.2x2,﹣x,﹣3 C.2x2,x,﹣3 D.2x2,x,3
10.(3分)(2021秋•沛县期中)根据如图所示的流程图中的程序,当输入数据x为1时,输出数值y为( )
A.﹣2 B.3 C.4 D.8
二.填空题(共8小题,满分24分,每小题3分)
11.(3分)(2019秋•崇川区校级期中)当k= 时,关于x,y的代数式x6﹣5kx4y3﹣4x6+3x4y3+3合并后不含x4y3项.
12.(3分)(2019秋•普陀区月考)当n= 时,和﹣5a3是同类项.
13.(3分)(2020秋•饶平县校级期末)已知关于x,y的多项式x4+(m+2)xny﹣xy2+3,其中n为正整数.当m,n为 时,它是五次四项式.
14.(3分)(2019秋•金山区校级月考)有一条铁丝长a米,用去了一半少b米(已知a>2b),则铁丝还剩 米.
15.(3分)(2019•杭州模拟)已知关于x的代数式,当x= 时,代数式的最小值为 .
16.(3分)(2009春•临川区校级期末)在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有 个;单项式有 个,次数为2的单项式是 ;系数为1的单项式是 .
17.(3分)(2018秋•西湖区校级月考)已知a﹣b=4,a﹣c=1,则代数式(2a﹣b﹣c)2+(c﹣b)2的值为 .
18.(3分)(2020秋•奉化区校级期末)当1≤m<3时,化简|m﹣1|﹣|m﹣3|= .
三.解答题(共6小题,满分46分)
19.(7分)当m为何值时,﹣y2+x2y﹣3是四次多项式.
20.(7分)(2021秋•绥宁县期中)已知:①单项式xmy3与﹣xyn(其中m、n为常数)是同类项,②多项式x2+ax+b(其中a、b为常数)和x2+2x﹣3+(2x﹣1)相等.求(a+b)+(﹣2m)n的值.
21.(7分)(2019秋•镇江期中)把下列代数式的序号填入相应的横线上
①a2b+ab﹣b2,②,③,④,⑤0,⑥,⑦
(1)单项式 ;
(2)多项式 ;
(3)整式 .
22.(9分)(2019秋•吉安期中)已知:A=ax2﹣x﹣1,B=3x2﹣2x+2(a为常数)
(1)当a=时,化简:B﹣2A;
(2)在(1)的条件下,若B﹣2A﹣2C=0,求C;
(3)若A与B的和中不含x2项,求a的值.
23.(8分)(2013秋•水城县校级月考)先去括号、再合并同类项
①2(a﹣b+c)﹣3(a+b﹣c)
②3a2b﹣2[ab2﹣2(a2b﹣2ab2)].
24.(8分)(2014秋•曹县期末)观察下列各式:
﹣a,a2,﹣a3,a4,﹣a5,a6,…
(1)写出第2014个和2015个单项式;
(2)写出第n个单项式.
【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第11讲《有理数全章复习与测试》同步讲学案: 这是一份【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第11讲《有理数全章复习与测试》同步讲学案,文件包含暑假小初衔接苏科版数学六年级六升七暑假预习-第11讲《有理数全章复习与测试》同步讲学案解析版docx、暑假小初衔接苏科版数学六年级六升七暑假预习-第11讲《有理数全章复习与测试》同步讲学案原卷版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。
【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第10讲《整式的加减》同步讲学案: 这是一份【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第10讲《整式的加减》同步讲学案,文件包含暑假小初衔接苏科版数学六年级六升七暑假预习-第10讲《整式的加减》同步讲学案解析版docx、暑假小初衔接苏科版数学六年级六升七暑假预习-第10讲《整式的加减》同步讲学案原卷版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。
【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第08讲《整式的相关概念与代数式的值》同步讲学案: 这是一份【暑假小初衔接】苏科版数学六年级(六升七)暑假预习-第08讲《整式的相关概念与代数式的值》同步讲学案,文件包含暑假小初衔接苏科版数学六年级六升七暑假预习-第08讲《整式的相关概念与代数式的值》同步讲学案解析版docx、暑假小初衔接苏科版数学六年级六升七暑假预习-第08讲《整式的相关概念与代数式的值》同步讲学案原卷版docx等2份学案配套教学资源,其中学案共22页, 欢迎下载使用。