人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率导学案及答案
展开10.1.1 有限样本空间与随机事件
【学习目标】
1.理解随机试验的概念及特点
2.理解样本点和样本空间,会求所给试验的样本点和样本空间
3.理解随机事件、必然事件、不可能事件的概念,并会判断某一事件的性质
【自主学习】
1.随机试验
(1)定义:把对随机现象的实现和对它的观察称为随机试验.
(2)特点:①试验可以在相同条件下重复进行;
②试验的所有可能结果是明确可知的,并且不止一个;
③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.
2.样本点和样本空间
(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.
(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.
3.事件的分类
(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.
②随机事件一般用大写字母A,B,C,…表示.
③在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.
(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.
(3)不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.
【课内探究】
例1、抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间。
例2、抛掷一枚骰子,观察它落地时朝上的面的点数,写出试验的样本空间.
例3、抛掷两枚硬币,观察它们落地时朝上的面的情况,写出试验的样本空间.
例4、如图10.1-2,一个电路中有A,B,C三个电器元件,每个元件可能正常,也可能失效。把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常。
(1)写出试验的样本空间;
(2)用集合表示下列事件:
M=“恰好两个元件正常”
N=“电路是通路”
T=“电路是断路”
【当堂检测】
一、单选题
1.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型、绘画4个兴趣小组,小明要随机选报其中的2个,则该试验中样本点的个数为( )
A.3 B.5 C.6 D.9
2.已知袋中有大小、形状完全相同的4个红色、3个白色的乒乓球,从中任取4个,则下列判断错误的是( )
A.事件“都是红色球”是随机事件
B.事件“都是白色球”是不可能事件
C.事件“至少有一个白色球”是必然事件
D.事件“有3个红色球和1个白色球”是随机事件
3.抛掷甲、乙两颗骰子,所得点数之和为X,那么X=4表示的基本事件是( )
A.一颗是3点,一颗是1点
B.两颗都是2点
C.一颗是3点,一颗是1点或两颗都是2点
D.甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点
4.下列事件中,随机事件的个数为( )
①三角形内角和为;②三角形中大边对大角,大角对大边;③三角形中两个内角和小于90°;④三角形中任意两边的和大于第三边
A.1个 B.2个 C.3个 D.4个
5.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数 B.点数的和是奇数
C.点数的和小于13 D.点数的和小于2
6.已知集合A是集合B的真子集,则下列关于非空集合A,B的四个命题:
①若任取,则是必然事件;
②若任取,则是不可能事件;
③若任取,则是随机事件;
④若任取,则是必然事件.
其中正确的命题有( )
A.1个 B.2个 C.3个 D.4个
二、多选题
7.在10件同类商品中,有8件红色的,2件白色的,从中任意抽取3件,下列事件是随机事件的是
A.3件都是红色 B.3件都是白色
C.至少有1件红色 D.有1件白色
8.(多选)下列试验中,随机事件有( )
A.某射手射击一次,射中10环
B.同时掷两枚骰子,都出现6点
C.某人购买福利彩票未中奖
D.若x为实数,则x2+1≥1
三、填空题
9.“在实数轴上任取一个点,取到的数是实数”是______现象(选填“随机”或“确定性”).
10.“甲乙两队进行一场足球赛,观察甲队比赛结果(包括平局)”的样本空间为___________.
11.有以下说法:
①一年按365天计算,两名学生的生日相同的概率是;②买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.
根据我们所学的概率知识,其中说法正确的序号是___.
12.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第998次抛掷恰好出现“正面向上”的概率为_____________.
四、解答题
13.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(1)写出对应的样本空间;
(2)求这个实验的样本空间中样本点的个数;
(3)写出“恰有两枚正面向上”这一事件的集合表示.
14.下列随机事件中,随机试验各指什么?试写出它们的样本空间.
(1)同时抛掷三枚骰子,记录三枚骰子出现的点数之和;
(2)从含有两件正品,和两件次品,的四件产品中任取两件,记录抽出产品的结果;
(3)用红、黄、蓝三种颜色给图中3个长方形随机涂色,每个长方形只涂一种颜色,记录长方形涂色的情况.
15.同时转动如图的两个转盘,记转盘(1)得到的数为,转盘(2)得到的数为,结果为.
(1)写出这个试验的样本空间.
(2)求这个试验的基本事件个数.
(3)“”这一事件包含哪几个基本事件?“且”呢?
(4)用集合表示事件:;用集合表示事件:.
16.有A,B,C,D四位同学站成一排照相,观察他们的站队顺序.
(1)写出这个试验的样本空间;
(2)用集合表示下列事件:“A在两侧”;“B,C两人相邻”.
高中第十章 概率10.1 随机事件与概率导学案: 这是一份高中第十章 概率10.1 随机事件与概率导学案,共4页。学案主要包含了学习目标,教学重点,教学难点等内容,欢迎下载使用。
人教A版 (2019)必修 第二册10.1 随机事件与概率导学案: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率导学案,共4页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。
人教A版 (2019)必修 第二册10.1 随机事件与概率学案: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率学案,共8页。