年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类

    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类第1页
    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类第2页
    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类第3页
    还剩42页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类

    展开

    这是一份四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类,共45页。试卷主要包含了解答题,﹣1+;,交于点C、D两点,AB,,连接AE、BE,,其顶点的横坐标为1等内容,欢迎下载使用。
    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类
    一.分式的化简求值(共2小题)
    1.(2022•巴中)解答题
    (1)计算:﹣4cos30°+(3.14﹣π)0+|1﹣|.
    (2)先化简,再求值÷(x+1﹣),其中x=﹣4.
    (3)求不等式组的整数解.
    2.(2021•巴中)(1)计算:2sin60°+|﹣2|﹣()﹣1+;
    (2)解不等式组,并把解集在数轴上表示出来.
    (3)先化简,再求值:÷(1+),请从﹣4,﹣3,0,1中选一个合适的数作为a的值代入求值.
    二.一元二次方程的解(共1小题)
    3.(2023•巴中)(1)计算:|3﹣|+()﹣1﹣4sin60°+()2.
    (2)求不等式组的解集.
    (3)先化简,再求值(+x﹣1)÷,其中x的值是方程x2﹣2x﹣3=0的根.
    三.反比例函数与一次函数的交点问题(共3小题)
    4.(2023•巴中)如图,正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,A的横坐标为﹣4,B的纵坐标为﹣6.
    (1)求反比例函数的表达式.
    (2)观察图象,直接写出不等式kx<的解集.
    (3)将直线AB向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接OD、BD,若△OBD的面积为20,求直线CD的表达式.

    5.(2022•巴中)如图,在平面直角坐标系中,直线y=x+b与x轴、y轴分别交于点A(﹣4,0)、B两点,与双曲线y=(k>0)交于点C、D两点,AB:BC=2:1.
    (1)求b,k的值;
    (2)求D点坐标并直接写出不等式x+b﹣≥0的解集;
    (3)连接CO并延长交双曲线于点E,连接OD、DE,求△ODE的面积.

    6.(2021•巴中)如图,双曲线y=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.
    (1)求m,k,b的值;
    (2)求△ABE的面积;
    (3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线y=有唯一交点,求n的值.

    四.二次函数的应用(共1小题)
    7.(2022•巴中)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.
    (1)求每盒猪肉粽和豆沙粽的进价;
    (2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.
    五.二次函数综合题(共3小题)
    8.(2023•巴中)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0)和B(0,3),其顶点的横坐标为1.
    (1)求抛物线的表达式.
    (2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值.
    (3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A、P、Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.

    9.(2022•巴中)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,﹣1≤x≤3.

    (1)求抛物线的表达式;
    (2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.
    ①当点P的横坐标为2时,求四边形ACFD的面积;
    ②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

    10.(2021•巴中)已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
    (1)求抛物线的表达式;
    (2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
    (3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.

    六.菱形的判定与性质(共1小题)
    11.(2021•巴中)如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.
    (1)求证:四边形ABED为菱形;
    (2)连接BD,当CE=5时,求BD的长.

    七.矩形的判定(共1小题)
    12.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.
    (1)求证:△ABE≌△FCE;
    (2)若AD=2AB,求证:四边形DEFG是矩形.

    八.切线的判定与性质(共2小题)
    13.(2023•巴中)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC于点E,交BA延长线于点F.
    (1)求证:DF是⊙O的切线.
    (2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).

    14.(2021•巴中)如图、△ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.
    (1)求证:直线AD是⊙O的切线;
    (2)若AD=2,BC=6,求图中阴影部分面积.

    九.作图—基本作图(共1小题)
    15.(2023•巴中)如图,已知等边△ABC,AD⊥BC,E为AB中点.以D为圆心,适当长为半径画弧,交DE于点M,交DB于点N,分别以M、N为圆心,大于MN为半径画弧,两弧交于点P,作射线DP交AB于点G.过点E作EF∥BC交射线DP于点F,连接BF、AF.
    (1)求证:四边形BDEF是菱形.
    (2)若AC=4,求△AFD的面积.

    一十.几何变换综合题(共1小题)
    16.(2023•巴中)综合与实践.
    (1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
    ①∠BOC的度数是    .
    ②BD:CE=   .
    (2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
    ①∠AOB的度数是    ;
    ②AD:BE=   .
    (3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
    ①说明△MND为等腰三角形.
    ②求∠MND的度数.

    一十一.相似三角形的判定(共1小题)
    17.(2022•巴中)四边形ABCD内接于⊙O,直径AC与弦BD交于点E,直线PB与⊙O相切于点B.

    (1)如图1,若∠PBA=30°,且EO=EA,求证:BA平分∠PBD;
    (2)如图2,连接OB,若∠DBA=2∠PBA,求证:△OAB∽△CDE.

    一十二.解直角三角形的应用-坡度坡角问题(共1小题)
    18.(2021•巴中)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)
    (1)求灯杆AB的高度;
    (2)求CD的长度.

    一十三.列表法与树状图法(共3小题)
    19.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
    等级
    周平均读书时间t(单位;小时)
    人数
    A
    0≤t<1
    4
    B
    1≤t<2
    a
    C
    2≤t<3
    20
    D
    3≤t<4
    15
    E
    t≥4
    5
    (1)求统计图表中a=   ,m=   .
    (2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为    .
    (3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.

    20.(2022•巴中)为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.
    参加四个社团活动人数统计表
    社团活动
    舞蹈
    篮球
    围棋
    足球
    人数
    50
    30

    80
    请根据以上信息,回答下列问题:
    (1)抽取的学生共有    人,其中参加围棋社的有    人;
    (2)若该校有3200人,估计全校参加篮球社的学生有多少人?
    (3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.

    21.(2021•巴中)为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
    (1)该校九年级共有    名学生,“D”等级所占圆心角的度数为    ;
    (2)请将条形统计图补充完整;
    (3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.


    四川省巴中市2021-2023三年中考数学真题分类汇编-03解答题知识点分类
    参考答案与试题解析
    一.分式的化简求值(共2小题)
    1.(2022•巴中)解答题
    (1)计算:﹣4cos30°+(3.14﹣π)0+|1﹣|.
    (2)先化简,再求值÷(x+1﹣),其中x=﹣4.
    (3)求不等式组的整数解.
    【答案】(1);
    (2),
    (3)﹣1,0,1.
    【解答】解:(1)﹣4cos30°+(3.14﹣π)0+|1﹣|
    =2﹣4×+1+﹣1
    =2﹣2+1+﹣1
    =.
    (2)÷(x+1﹣)
    =÷
    =•

    =,
    当x=﹣4时,原式==+2.
    (3),
    解不等式①,得:x≤1,
    解不等式②,得:x>﹣2,
    ∴原不等式组的解集是﹣2<x≤1,
    ∴该不等式组的整数解是﹣1,0,1.
    2.(2021•巴中)(1)计算:2sin60°+|﹣2|﹣()﹣1+;
    (2)解不等式组,并把解集在数轴上表示出来.
    (3)先化简,再求值:÷(1+),请从﹣4,﹣3,0,1中选一个合适的数作为a的值代入求值.
    【答案】(1)﹣1;
    (2)﹣3<x≤﹣1,解集在数轴上表示见解答;
    (3),5.
    【解答】解:(1)2sin60°+|﹣2|﹣()﹣1+
    =2×+2﹣﹣2+﹣1
    =+2﹣﹣2+﹣1
    =﹣1;
    (2),
    解不等式①,得
    x>﹣3,
    解不等式②,得
    x≤﹣1,
    ∴原不等式组的解集是﹣3<x≤﹣1,
    解集在数轴上表示如下:

    (3)÷(1+)


    =,
    ∵a(a+3)≠0,a+4≠0,
    ∴a≠﹣4,﹣3,0,
    ∴a=1,
    当a=1时,原式==5.
    二.一元二次方程的解(共1小题)
    3.(2023•巴中)(1)计算:|3﹣|+()﹣1﹣4sin60°+()2.
    (2)求不等式组的解集.
    (3)先化简,再求值(+x﹣1)÷,其中x的值是方程x2﹣2x﹣3=0的根.
    【答案】(1)2;
    (2)原不等式组的解集为﹣3<x≤2;
    (3)4.
    【解答】解:(1)|3﹣|+()﹣1﹣4sin60°+()2
    =2﹣3+3﹣4×+2
    =2﹣2+2
    =2;
    (2)解不等式①得,x<2;
    解不等式②得,x≥﹣3,
    ∴原不等式组的解集为﹣3<x≤2;
    (3)(+x﹣1)÷

    =x+1,
    解方程x2﹣2x﹣3=0得x1=3,x2=﹣1,
    ∵x2(x+1)2≠0,
    ∴x≠0,x≠﹣1,
    ∴x=3,
    ∴原式=3+1=4.
    三.反比例函数与一次函数的交点问题(共3小题)
    4.(2023•巴中)如图,正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,A的横坐标为﹣4,B的纵坐标为﹣6.
    (1)求反比例函数的表达式.
    (2)观察图象,直接写出不等式kx<的解集.
    (3)将直线AB向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接OD、BD,若△OBD的面积为20,求直线CD的表达式.

    【答案】(1)反比例函数的表达式为y=﹣;
    (2)﹣4<x<0或x>4;
    (3)直线CD为y=﹣x+10.
    【解答】解:(1)∵正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,
    ∴A、B关于原点对称,
    ∵A的横坐标为﹣4,B的纵坐标为﹣6,
    ∴A(﹣4,6),B(4,﹣6),
    ∵点A(﹣4,6)在反比例函数y=(m≠x)的图象上,
    ∴6=,
    ∴m=﹣24,
    ∴反比例函数的表达式为y=﹣;
    (2)观察函数图象,可知:当﹣4<x<0或x>4时,正比例函数y=kx的图象在反比例函数y=(m≠x)的图象下方,
    ∴不等式kx<的解集为﹣4<x<0或x>4;
    (3)方法一:连接BE,作BG⊥y轴于点G,
    ∵A(﹣4,6)在直线y=kx上,
    ∴6=﹣4k,解得k=﹣,
    ∴直线AB的表达式为y=﹣x,
    ∵CD∥AB,
    ∴S△OBD=S△OBE=20,
    ∵B(4,﹣6),
    ∴BG=4,
    ∴S△OBE==20,
    ∴OE=10,
    .E(0,10),
    ∴直线CD为y=﹣x+10.
    方法二:
    连接BF,作BH⊥x轴于H,
    ∵A(﹣4,6)在直线y=kx上,
    ∴k=﹣,
    ∴直线AB的表达式为y=﹣x,
    ∵CD∥AB,
    ∴S△OBD=S△OBF=20,
    ∵B(4,﹣6),
    ∴OF•6=20,
    ∴OF=,
    ∴F(,0),
    设直线CD的表达式为y=﹣x+b,
    代入F点的坐标得,﹣×+b=0
    解得b=10,
    ∴直线CD为y=﹣x+10.


    5.(2022•巴中)如图,在平面直角坐标系中,直线y=x+b与x轴、y轴分别交于点A(﹣4,0)、B两点,与双曲线y=(k>0)交于点C、D两点,AB:BC=2:1.
    (1)求b,k的值;
    (2)求D点坐标并直接写出不等式x+b﹣≥0的解集;
    (3)连接CO并延长交双曲线于点E,连接OD、DE,求△ODE的面积.

    【答案】(1)k=6,b=2;
    (2)D(﹣6,﹣1),﹣6≤x<0或x≥2,
    (3)8.
    【解答】解:(1)∵点A在直线上,A(﹣4,0),
    ∴,
    解得b=2,
    过C作CF⊥x轴于点F,
    ∴△AOB∽△AFC,
    ∵AB:BC=2:1,
    ∴,
    ∴AF=6,
    ∴OF=2,
    在中,令x=2,得y=3,
    ∴C(2,3),
    ∴,
    ∴k=6.
    (2)∵D点是和交点,
    ∴,
    解得或,
    ∵D点在第三象限,
    ∴D(﹣6,﹣1),
    由图象得,当﹣6≤x<0或x≥2时,,
    ∴不等式的解集为﹣6≤x<0或x≥2.
    (3)∵△ODE和△OCD同底同高,
    ∴S△ODE=S△OCD,
    ∵S△COD=S△COA+S△ADO,
    ∴.

    6.(2021•巴中)如图,双曲线y=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.
    (1)求m,k,b的值;
    (2)求△ABE的面积;
    (3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线y=有唯一交点,求n的值.

    【答案】(1)m=﹣8,k=﹣,b=﹣3;
    (2);
    (3)3+4.
    【解答】解:(1)∵双曲线y=过点A(﹣8,1),
    ∴m=﹣8×1=﹣8,
    又∵直线y=kx+b经过点A(﹣8,1)、B(2,﹣4),
    ∴,
    解得k=﹣,b=﹣3,
    答:m=﹣8,k=﹣,b=﹣3;
    (2)由(1)可得反比例函数的关系式为y=,
    直线AB的关系式为y=﹣x﹣3,
    当y=0时,﹣x﹣3=0,解得x=﹣6,即C(﹣6,0),
    ∴OC=6,
    由点E(1,0)可得OE=1,
    ∴EC=OE+OC=1+6=7,
    ∴S△ABE=S△ACE+S△BCE
    =×7×1+×7×4
    =;
    (3)设直线DE的关系式为y=kx+b,D(0,﹣3),E(1,0)代入得,
    b=﹣3,k+b=0,
    ∴k=3,b=﹣3,
    ∴直线DE的关系式为y=3x﹣3,
    设DE平移后的关系式为y=3x﹣3+n,由于平移后与y=有唯一公共点,
    即方程3x﹣3+n=有唯一解,
    也就是关于x的方程3x2+(n﹣3)x+8=0有两个相等的实数根,
    ∴(n﹣3)2﹣4×3×8=0,
    解得n=3+4,n=3﹣4(舍去),
    ∴n=3+4,
    答:n的值为3+4.
    四.二次函数的应用(共1小题)
    7.(2022•巴中)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.
    (1)求每盒猪肉粽和豆沙粽的进价;
    (2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.
    【答案】(1)每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元;
    (2)该商家每天销售猪肉粽获得的最大利润为1800元.
    【解答】解:设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元,
    由题意得:,
    解得:,
    ∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元;
    (2)w=(a﹣40)[100﹣2(a﹣50)]=﹣2(a﹣70)2+1800,
    ∵﹣2<0,
    ∴当a=70时,w有最大值,最大值为1800元.
    ∴该商家每天销售猪肉粽获得的最大利润为1800元.
    五.二次函数综合题(共3小题)
    8.(2023•巴中)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0)和B(0,3),其顶点的横坐标为1.
    (1)求抛物线的表达式.
    (2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值.
    (3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A、P、Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.

    【答案】(1)y=﹣x2+2x+3;
    (2)当m=时,AN+MN有最大值,最大值为;
    (3)存在以A,P,Q,M为顶点的平行四边形,点Q的坐标为(﹣,)或(﹣,)或(,﹣).
    【解答】解:(1)∵抛物线的顶点横坐标为1,
    ∴抛物线的对称轴为直线x=1.
    ∵点A的坐标为(﹣1,0),
    ∴抛物线与x轴的另一交点坐标为(3,0).
    将(﹣1,0),(3,0),(0,3)代入y=ax2+bx+c得:,
    解得:,
    ∴抛物线的表达式为y=﹣x2+2x+3;
    (2)∵直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,
    ∴点M的坐标为(m,﹣m2+2m+3),点N的坐标为(m,0),
    ∴MN=﹣m2+2m+3,AN=m+1,
    ∴AN+MN=m+1+(﹣m2+2m+3)=﹣m2+3m+4=﹣(m﹣)2+,
    ∵﹣1<0,且0<m<3,
    ∴当m=时,AN+MN有最大值,最大值为;
    (3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴抛物线向左平移1个单位长度后的表达式为y=﹣x2+4.
    当x=时,y=﹣()2+2×+3=,
    ∴点M的坐标为(,).
    假设存在以A,P,Q,M为顶点的平行四边形,设点P的坐标为(1,m),点Q的坐标为(n,﹣n2+4).
    ①当AM为对角线时,对角线AM,PQ互相平分,
    ∴=,
    解得:n=﹣,
    ∴点Q的坐标为(﹣,);
    ②当AP为对角线时,对角线AP,MQ互相平分,
    ∴=,
    解得:n=﹣,
    ∴点Q的坐标为(﹣,);
    ③当AQ为对角线时,对角线AQ,PM互相平分,
    ∴=,
    解得:n=,
    ∴点Q的坐标为(,﹣).
    综上所述,存在以A,P,Q,M为顶点的平行四边形,点Q的坐标为(﹣,)或(﹣,)或(,﹣).
    9.(2022•巴中)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,﹣1≤x≤3.

    (1)求抛物线的表达式;
    (2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.
    ①当点P的横坐标为2时,求四边形ACFD的面积;
    ②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

    【答案】(1)y=﹣x2+2x+3;
    (2)①4;②是,定值为8,理由见解析.
    【解答】解:(1)∵当y≥0时,﹣1≤x≤3,
    ∴x1=﹣1,x2=3是ax2+2x+c=0的两根,A(﹣1,0),B(3,0),
    ∴,
    解得:,
    ∴抛物线的表达式为:y=﹣x2+2x+3;
    (2)①把x=2代入y=﹣x2+2x+3得:y=3,
    ∴D(2,3).
    又当x=0,y=3,
    ∴C(0,3),
    ∴线段CD∥x轴.
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴F(1,4),;
    ②设D(m,﹣m2+2m+3)(1<m<3),
    直线AD:y=k1x+b1,BD:y=k2x+b2,
    因此可得:或,
    解得:或,
    ∴直线AD:y=(3﹣m)x+(3﹣m),BD:y=﹣(m+1)x+3(m+1).
    令x=1得yM=6﹣2m,yN=2m+2,
    ∴ME=6﹣2m,NE=2m+2,
    ∴NE+ME=8.
    10.(2021•巴中)已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
    (1)求抛物线的表达式;
    (2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
    (3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.

    【答案】(1)y=x2﹣x﹣3;(2)P(3,﹣),有最大值;(3)D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).
    【解答】解:(1)将点A(﹣2,0)、B(6,0)、C(0,﹣3)代入y=ax2+bx+c,
    得,
    解得,
    ∴y=x2﹣x﹣3;
    (2)如图1,过点A作AE⊥x轴交直线BC于点E,过P作PF⊥x轴交直线BC于点F,
    ∴PF∥AE,
    ∴=,
    设直线BC的解析式为y=kx+d,
    ∴,
    ∴,
    ∴y=x﹣3,
    设P(t,t2﹣t﹣3),则F(t,t﹣3),
    ∴PF=t﹣3﹣t2+t+3=﹣t2+t,
    ∵A(﹣2,0),
    ∴E(﹣2,﹣4),
    ∴AE=4,
    ∴===﹣t2+t=﹣(t﹣3)2+,
    ∴当t=3时,有最大值,
    ∴P(3,﹣);
    (3)∵P(3,﹣),D点在l上,
    如图2,当∠CBD=90°时,
    过点B作GH⊥x轴,过点D作DG⊥y轴,DG与GH交于点G,过点C作CH⊥y轴,CH与GH交于点H,
    ∴∠DBG+∠GDB=90°,∠DBG+∠CBH=90°,
    ∴∠GDB=∠CBH,
    ∴△DBG∽△BCH,
    ∴=,即=,
    ∴BG=6,
    ∴D(3,6);
    如图3,当∠BCD=90°时,
    过点D作DK⊥y轴交于点K,
    ∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°,
    ∴∠CDK=∠OCB,
    ∴△OBC∽△KCD,
    ∴=,即=,
    ∴KC=6,
    ∴D(3,﹣9);
    如图4,当∠BDC=90°时,
    线段BC的中点T(3,﹣),BC=3,
    设D(3,m),
    ∵DT=BC,
    ∴|m+|=,
    ∴m=﹣或m=﹣﹣,
    ∴D(3,﹣)或D(3,﹣﹣);
    综上所述:△BCD是直角三角形时,D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).




    六.菱形的判定与性质(共1小题)
    11.(2021•巴中)如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.
    (1)求证:四边形ABED为菱形;
    (2)连接BD,当CE=5时,求BD的长.

    【答案】(1)证明见解析;
    (2)5.
    【解答】证明:(1)连接BD,

    根据题意得出AM为BD的线段垂直平分线,
    即BD⊥AE,
    ∵AD∥BC,AB=AD=CD=BC,
    ∴∠ADB=∠DBE,∠ABD=∠ADB,
    ∴∠ABD=∠DBE,
    ∵BD⊥AE,
    ∴AB=BE,
    ∴AD=AB=BE=DE,
    ∴四边形ABED为菱形;
    方法二:设AE与BD的交点为O,
    ∴AM为BD的线段垂直平分线,
    ∴BO=DO,
    由平行可得∠DAO=∠BEO,
    ∵∠AOD=∠EOB,
    ∴△AOD≌△EOB(AAS),
    ∴AO=EO,
    ∴四边形ABED是平行四边形,
    ∵AE⊥BD,
    ∴平行四边形ABED是菱形;
    (2)∵AB=AD=CD=BC,BE=AD,
    ∴E是BC的中点,
    ∵DE=BE=CE=CD=5,
    ∴△BDC是直角三角形,
    ∵2DC=BC,
    ∴△BDC是含30°的直角三角形,
    ∴BD=CD=5.
    七.矩形的判定(共1小题)
    12.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.
    (1)求证:△ABE≌△FCE;
    (2)若AD=2AB,求证:四边形DEFG是矩形.

    【答案】(1)证明过程见解答;
    (2)证明过程见解答.
    【解答】证明:(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠EAB=∠CFE,
    又∵E为BC的中点,
    ∴EC=EB,
    在△ABE和△FCE中,

    ∴△ABE≌△FCE(AAS);

    (2)∵△ABE≌△FCE,
    ∴AB=CF,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,
    ∴DC=CF,
    又∵CE=CG,
    ∴四边形DEFG是平行四边形,
    ∵E为BC的中点,CE=CG,
    ∴BC=EG,
    又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,
    ∴DF=EG,
    ∴平行四边形DEFG是矩形.
    八.切线的判定与性质(共2小题)
    13.(2023•巴中)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC于点E,交BA延长线于点F.
    (1)求证:DF是⊙O的切线.
    (2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).

    【答案】(1)证明过程见解答;
    (2)﹣.
    【解答】(1)证明:如图,连接OD,
    ∵AB=AC,
    ∴∠B=∠C,
    ∵OB=OD,
    ∴∠B=∠ODB,
    ∴∠ODB=∠C,
    ∴AC∥OD,
    ∵DF⊥AC,
    ∴OD⊥DF,
    ∵OD是⊙O的半径,
    ∴DF是⊙O的切线;
    (2)解:如图,连接AD,
    设⊙O的半径为r,
    在Rt△CED中,CE=,CD=2,
    ∴ED2=CD2﹣CE2=4﹣3=1,
    ∴ED=1,
    ∵cos∠C==,
    ∴∠C=30°,
    ∴∠B=30°,
    ∴∠AOD=60°,
    ∵AC∥OD,O为AB的中点,
    ∴OD是△ABC的中位线,
    ∴D是BC中点,
    ∴CD=BD=2,
    ∵AB是⊙O的的直径,
    ∴∠ADB=90°,
    ∴AD=AB=r,
    ∴BD=AD=r=2,
    ∴r=,
    ∴AB=2r=,
    ∴AE=AC﹣CE=AB﹣=﹣=,
    ∴阴影部分的面积=四边形AODE的面积﹣扇形AOD的面积
    =(+)×1﹣π×()2
    =﹣.

    14.(2021•巴中)如图、△ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.
    (1)求证:直线AD是⊙O的切线;
    (2)若AD=2,BC=6,求图中阴影部分面积.

    【答案】(1)详见解答;
    (2)6π﹣9.
    【解答】解:(1)如图,连接OA并延长交BC于E,
    ∵AB=AC,△ABC内接于⊙O,
    ∴AE所在的直线是△ABC的对称轴,也是⊙O的对称轴,
    ∴∠BAE=∠CAE,
    又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,
    ∴∠BAD+∠BAE=×180°=90°,
    即AD⊥OA,
    ∴AD是⊙O的切线;
    (2)连接OB,
    ∵∠OAD=∠OEC=90°,∠AOD=∠EOC,
    ∴△AOD∽△EOC,
    ∴=
    由(1)可知AO是△ABC的对称轴,
    ∴OE垂直平分BC,
    ∴CE=BC=3,
    设半径为r,在Rt△EOC中,由勾股定理得,
    OE==,
    ∴=,
    解得r=6(取正值),
    经检验r=6是原方程的解,
    即OB=OC=OA=6,
    又∵BC=6,
    ∴△OBC是等边三角形,
    ∴∠BOC=60°,OE=OC=3,
    ∴S阴影部分=S扇形BOC﹣S△BOC
    =﹣×6×3
    =6π﹣9.

    九.作图—基本作图(共1小题)
    15.(2023•巴中)如图,已知等边△ABC,AD⊥BC,E为AB中点.以D为圆心,适当长为半径画弧,交DE于点M,交DB于点N,分别以M、N为圆心,大于MN为半径画弧,两弧交于点P,作射线DP交AB于点G.过点E作EF∥BC交射线DP于点F,连接BF、AF.
    (1)求证:四边形BDEF是菱形.
    (2)若AC=4,求△AFD的面积.

    【答案】(1)见解析;
    (2)3.
    【解答】(1)证明:∵△ABC是等边三角形,
    ∴AB=BC,∠ABC=60°,
    ∵AD⊥BC,
    ∴BD=BC=AB,
    ∵E为AB中点.
    ∴,
    ∴BD=DE,
    ∴△BED是等边三角形,
    ∴BE=BD=DE,
    由作图知,DF平分∠EDB,
    ∴∠EDF=∠FDB,
    ∵EF∥BC,
    ∴∠EFD=∠FDB,
    ∴∠EFD=∠EDF,
    ∴EF=ED,
    ∴EF∥BD,
    ∴四边形BDEF是平行四边形,
    ∵DE=BD,
    ∴四边形BDEF是菱形;
    (2)解:∵△ABC是等边三角形,AD⊥BC,
    ∴∠C=60°,∠ADC=90°,∠BAD=30°,
    ∵AC=4,
    ∴=2,
    ∵四边形BDEF是菱形,
    ∴AG⊥FD,FG=GD,
    在Rt△AGD中,∵∠BAD=30°,
    ∴,
    ∴,
    ∴.

    一十.几何变换综合题(共1小题)
    16.(2023•巴中)综合与实践.
    (1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
    ①∠BOC的度数是  90° .
    ②BD:CE= 1:1 .
    (2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
    ①∠AOB的度数是  45° ;
    ②AD:BE= 1: .
    (3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
    ①说明△MND为等腰三角形.
    ②求∠MND的度数.

    【答案】(1)①∠BOC的度数是 90°,②BD:CE=1:1.
    (2)①∠AOB 的度数是 45°,②.
    (3)①证明见解答过程,②∠MND=120°.
    【解答】解:(1)①∵∠BAC=∠DAE=90°,
    ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
    ∴∠BAD=∠CAE.
    又∵AB=AC,AD=AE,
    ∴△BAD≌△CAE(SAS).
    ∴∠ABD=∠ACE,
    ∵∠BAC=90°,
    ∴∠ABC+∠ACB=∠ABD+∠OBC+∠ACB=90°,
    ∴∠ACE+∠OBC+∠ACB=90°,
    即:∠BCE+∠OBC=90°,
    ∴∠BOC=90°.
    故∠BOC的度数是90°.
    ②由①得△BAD≌△CAE,
    ∴BD=CE.
    故BD:CE=1:1.
    (2)①∵AB=AC,DE=DC,
    ∴,
    又∵∠BAC=∠EDC=90°,
    ∴△ABC∽△DEC,
    ∴∠ACB=∠DCB,.
    ∴∠ACE+∠ECB=∠DCA+∠ACE,
    ∴∠ECB=∠DCA.
    ∴△ECB∽△DCA,
    ∴∠CBE=∠CAD,
    ∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣∠ABO﹣∠CAD﹣∠BAC=180°﹣∠ABO﹣∠CBE﹣90°=180°﹣45°﹣90°=45°.
    故∠AOB 的度数是45°.
    ②由①得:△ECB∽△DCA.
    ∴AD:BE=DC:EC,
    ∵∠EDC=90°,且DE=DC,
    ∴∠DCE=45°,
    ∴=cos45°=.
    ∴.
    (3)①解:连接BF、CE,延长CE交MN于点P,交BF于点O.
    在等边△ABC中AB=AC,又∵AD⊥BC于点D,
    ∴D为BC的中点,
    又∵M为EF的中点,N为BE的中点,
    ∴MN、ND分别是在△BEF、△BCE的中位线,
    ∴MN=BF,DN=EC.
    ∵∠FAE=∠BAC=60°,
    ∴∠FAE+∠EAB=∠BAC+∠EAB.
    ∴∠FAB=∠EAC.
    在△ACE和△ABF中,

    ∴△ACE≌△ABF(SAS).
    ∴BF=EC.
    ∴MN=DN.
    ∴△MND为等腰三角形.
    ②∵△ACE≌△ABF,
    ∴∠ACE=∠ABF,
    由(1)(2)规律可知:∠BOC=60°,
    ∴∠FOC=180°﹣∠BOC=180°﹣60°=120°,
    又∵BF∥MN,CP∥DN,
    ∴∠MND=∠MPE=∠FOC=120°.

    一十一.相似三角形的判定(共1小题)
    17.(2022•巴中)四边形ABCD内接于⊙O,直径AC与弦BD交于点E,直线PB与⊙O相切于点B.

    (1)如图1,若∠PBA=30°,且EO=EA,求证:BA平分∠PBD;
    (2)如图2,连接OB,若∠DBA=2∠PBA,求证:△OAB∽△CDE.

    【答案】(1)见解析;
    (2)见解析.
    【解答】(1)证明:连接OB,
    ∵直线PB与⊙O相切于点B,
    ∴∠PBO=90°.
    ∴∠PBA+∠ABO=90°.
    ∵∠PBA=30°,
    ∴∠ABO=60°.
    又∵OA=OB,
    ∴△AOB为等边三角形.
    又∵OE=AE,
    ∴BE平分∠ABO.
    ∴,
    ∴BA平分∠PBD;

    (2)证明:∵直线PB与⊙O相切于点B,
    ∴∠PBO=90°.
    ∴∠PBA+∠ABO=90°.
    ∵AC为直径,
    ∴∠ABC=90°.
    ∴∠OBC+∠ABO=90°.
    ∴∠OBC=∠PBA.
    ∵OB=OC,
    ∴∠PBA=∠OBC=∠OCB.
    ∴∠AOB=2∠OCB=2∠PBA.
    ∵∠ACD=∠ABD=2∠PBA,
    ∴∠AOB=∠ACD,
    又∵∠BAO=∠BDC,
    ∴△OAB∽△CDE.

    一十二.解直角三角形的应用-坡度坡角问题(共1小题)
    18.(2021•巴中)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)
    (1)求灯杆AB的高度;
    (2)求CD的长度.

    【答案】(1)12m;
    (2)24.9m.
    【解答】解:(1)延长BA交CG于点E,
    则BE⊥CG,
    在Rt△ACE中,∠ACE=30°,AC=12m,
    ∴AE=AC=×12=6(m),CE=AC•cosα=12×=6(m),
    在Rt△BCE中,∠BCE=60°,
    ∴BE=CE•tan∠BCE=6×=18(m),
    ∴AB=BE﹣AE=18﹣6=12(m),
    答:灯杆AB的高度为12m;
    (2)在Rt△BDE中,∠BDE=27°,
    ∴CD=DE﹣CE=﹣6≈24.9(m),
    答:CD的长度约为24.9m.

    一十三.列表法与树状图法(共3小题)
    19.(2023•巴中)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
    等级
    周平均读书时间t(单位;小时)
    人数
    A
    0≤t<1
    4
    B
    1≤t<2
    a
    C
    2≤t<3
    20
    D
    3≤t<4
    15
    E
    t≥4
    5
    (1)求统计图表中a= 6 ,m= 40 .
    (2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为  1120人 .
    (3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.

    【答案】(1)6,40;
    (2)1120人;
    (3).
    【解答】解:(1)∵样本容量为15÷30%=50,
    ∴a=50﹣(4+20+15+5)=6,
    m%=×100%=40%,即m=40,
    故答案为:6,40;
    (2)估计该校每周读书时间至少3小时的人数为2800×=1120(人),
    故答案为:1120人;
    (3)根据题意列表如下:

    男1
    男2
    男3

    男1
    ﹣﹣
    男2男1
    男3男1
    女男1
    男2
    男1男2
    ﹣﹣
    男3男2
    女男2
    男3
    男1男3
    男2男3
    ﹣﹣
    女男3

    男1女
    男2女
    男3女
    ﹣﹣
    由表格可知,共有12种等可能出现的结果,其中该班恰好选出1名男生1名女生参加交流会的结果有6种,
    所以该班恰好选出1名男生1名女生参加交流会的概率为=.
    20.(2022•巴中)为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.
    参加四个社团活动人数统计表
    社团活动
    舞蹈
    篮球
    围棋
    足球
    人数
    50
    30

    80
    请根据以上信息,回答下列问题:
    (1)抽取的学生共有  200 人,其中参加围棋社的有  40 人;
    (2)若该校有3200人,估计全校参加篮球社的学生有多少人?
    (3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.

    【答案】(1)200,40;
    (2)480人;
    (3).
    【解答】解:(1)抽取的学生共有:80÷40%=200(人),
    参加围棋社的有:200﹣50﹣30﹣80=40(人);
    故答案为:200,40;

    (2)若该校有3200人,估计全校参加篮球社的学生共有:3200×=480(人);

    (3)画树状图如下:

    ∵所有等可能出现的结果总数为20个,其中抽到一男一女的情况数有12个,
    ∴恰好抽到一男一女概率为=.
    21.(2021•巴中)为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
    (1)该校九年级共有  500 名学生,“D”等级所占圆心角的度数为  36° ;
    (2)请将条形统计图补充完整;
    (3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.

    【答案】(1)500,36°;
    (2)图形见解析;
    (3)此规则不合理,理由见解析.
    【解答】解:(1)该校九年级共有学生:150÷30%=500(名),
    则D等级所占圆心角的度数为:360°×=36°,
    故答案为:500,36°;
    (2)B等级的人数为:500﹣150﹣100﹣50=200(名),
    将条形统计图补充完整如下:

    (3)此规则不合理,理由如下:
    画树状图如图:

    共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,
    ∴选甲乙的概率为=,选丙丁的概率为=,
    ∵>,
    ∴此规则不合理.

    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类:

    这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map