终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    立即下载
    加入资料篮
    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第1页
    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第2页
    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类第3页
    还剩43页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    展开

    这是一份四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共46页。试卷主要包含了,与x轴相交于点B,,B两点,与抛物线交于B,C两点,,点B关于y轴的对称点为B'等内容,欢迎下载使用。
    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    一.一次函数的应用(共1小题)
    1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.
    (1)求A,B两种食材的单价;
    (2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.
    二.反比例函数综合题(共3小题)
    2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.
    (1)求反比例函数的表达式;
    (2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.

    3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
    (1)求反比例函数的表达式及点B的坐标;
    (2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
    (3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.

    4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图
    象的一个交点为B(a,4),过点B作AB的垂线l.
    (1)求点A的坐标及反比例函数的表达式;
    (2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;
    (3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.

    三.二次函数综合题(共3小题)
    5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.
    (1)求抛物线的函数表达式;
    (2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;
    (3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.

    6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.
    (1)当k=2时,求A,B两点的坐标;
    (2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;
    (3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.

    7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.
    (1)求抛物线的函数表达式;
    (2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;
    (3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.

    四.三角形综合题(共1小题)
    8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.
    在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.
    【初步感知】
    (1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.
    【深入探究】
    (2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;
    ②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).
    【拓展运用】
    (3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).

    五.圆的综合题(共2小题)
    9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
    (1)求证:∠A=∠ACF;
    (2)若AC=8,cos∠ACF=,求BF及DE的长.

    10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.
    (1)求证:CD是⊙O的切线;
    (2)若⊙O的半径为,△ABC的面积为2,求CD的长;
    (3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.

    六.几何变换综合题(共2小题)
    11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.
    【尝试初探】
    (1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.
    【深入探究】
    (2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.
    【拓展延伸】
    (3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).


    12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.
    (1)如图1,当点A′落在AC的延长线上时,求AA′的长;
    (2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;
    (3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.

    七.解直角三角形的应用(共1小题)
    13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.
    如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

    八.解直角三角形的应用-仰角俯角问题(共1小题)
    14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)


    四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.一次函数的应用(共1小题)
    1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.
    (1)求A,B两种食材的单价;
    (2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.
    【答案】(1)A种食材单价是每千克38元,B种食材单价是每千克30元;
    (2)A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.
    【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:

    解得:,
    ∴A种食材单价是每千克38元,B种食材单价是每千克30元;
    (2)设A种食材购买m千克,B种食材购买(36﹣m)千克,总费用为w元,由题意得:
    w=38m+30(36﹣m)=8m+1080,
    ∵m≥2(36﹣m),
    ∴24≤m≤36,
    ∵k=8>0,
    ∴w随m的增大而增大,
    ∴当m=24时,w有最小值为:8×24+1080=1272(元),
    ∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.
    二.反比例函数综合题(共3小题)
    2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.
    (1)求反比例函数的表达式;
    (2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.

    【答案】(1)反比例函数的表达式为y=;
    (2)直线AD的函数表达式为y=﹣x+,点C的坐标为(4,).
    【解答】(1)∵一次函数y=x+的图象经过点A(a,3),
    ∴a+=3,
    解得:a=2,
    ∴A(2,3),
    将A(2,3)代入y=(x>0),
    得:3=,
    ∴k=6,
    ∴反比例函数的表达式为y=;
    (2)如图,过点A作AE⊥x轴于点E,
    在y=x+中,令y=0,得x+=0,
    解得:x=﹣2,
    ∴B(﹣2,0),
    ∵E(2,0),
    ∴BE=2﹣(﹣2)=4,
    ∵△ABD是以BD为底边的等腰三角形,
    ∴AB=AD,
    ∵AE⊥BD,
    ∴DE=BE=4,
    ∴D(6,0),
    设直线AD的函数表达式为y=mx+n,
    ∵A(2,3),D(6,0),
    ∴,
    解得:,
    ∴直线AD的函数表达式为y=﹣x+,
    联立方程组:,
    解得:(舍去),,
    ∴点C的坐标为(4,).

    3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.
    (1)求反比例函数的表达式及点B的坐标;
    (2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;
    (3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.

    【答案】(1)反比例函数的解析式为:y=,点B(2,2);
    (2)BC的长为4或;
    (3)点P(﹣4,﹣1),点Q(﹣1,5).
    【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,
    ∴4=﹣2a+6,
    ∴a=1,
    ∴点A(1,4),
    ∵反比例函数y=的图象过点A(1,4),
    ∴k=1×4=4;
    ∴反比例函数的解析式为:y=,
    联立方程组可得:,
    解得:,,
    ∴点B(2,2);
    (2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,

    ∴AE∥CF,
    ∴△AEH∽△CFH,
    ∴,
    当=时,则CF=2AE=2,
    ∴点C(﹣2,﹣2),
    ∴BC==4,
    当=2时,则CF=AE=,
    ∴点C(﹣,﹣8),
    ∴BC==,
    综上所述:BC的长为4或;
    (3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,

    ∵直线y=﹣2x+6与y轴交于点E,
    ∴点E(0,6),
    ∵点B(2,2),
    ∴BF=OF=2,
    ∴EF=4,
    ∵∠ABP=90°,
    ∴∠ABF+∠FBN=90°=∠ABF+∠BEF,
    ∴∠BEF=∠FBN,
    又∵∠EFB=∠BFN=90°,
    ∴△EBF∽△BNF,
    ∴,
    ∴FN==1,
    ∴点N(0,1),
    ∴直线BN的解析式为:y=x+1,
    联立方程组得:,
    解得:,,
    ∴点P(﹣4,﹣1),
    ∴直线AP的解析式为:y=x+3,
    ∵AP垂直平分BQ,
    ∴设BQ的解析式为y=﹣x+4,
    ∴x+3=﹣x+4,
    ∴x=,
    ∴点H(,),
    ∵点H是BQ的中点,点B(2,2),
    ∴点Q(﹣1,5).
    4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图
    象的一个交点为B(a,4),过点B作AB的垂线l.
    (1)求点A的坐标及反比例函数的表达式;
    (2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;
    (3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.

    【答案】(1)点A的坐标为(0,5),反比例函数的表达式为
    (2)点C的坐标为(6,9)或(﹣4,﹣1);
    (3)点P的坐标为 的值为3.
    【解答】解:(1)令x=0,则y=﹣x+5=5,
    ∴点A的坐标为(0,5),
    将B(a,4)代入y=﹣x+5得,4=﹣a+5,
    ∴a=1,
    ∴B(1,4),
    将B(1,4)代入y=得,4=,
    解得k=4,
    ∴反比例函数的表达式为y=;
    (2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,

    令y=﹣x+5=0得,x=5,
    ∴N(5,0),
    ∴OA=ON=5,
    ∵∠AON=90°,
    ∴∠OAN=45°,
    ∵A(0,5),B(1,4),
    ∴=,
    ∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,
    ∴,
    ∴M(0,3),
    设直线l的解析式为y=k1x+b1,
    将M(0,3),B(1,4)代入y=k1x+b1得,,
    解得,
    ∴直线l的解析式为y=x+3,
    设点C的坐标为(t,t+3),
    ∵•|xB﹣xC|=,
    解得t=﹣4或t=6,
    当t=﹣4时,t+3=﹣1,
    当t=6时,t+3=9,
    ∴点C的坐标为(6,9)或(﹣4,﹣1);
    方法二:设点C的坐标为(t,t+3),
    ∴BC==|1﹣t|,
    ∴S△ABC===5,
    ∴t=﹣4或t=6,
    当t=﹣4时,t+3=﹣1,
    当t=6时,t+3=9,
    ∴点C的坐标为(6,9)或(﹣4,﹣1);
    (3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,
    将直线l与双曲线的解析式联立方程组,
    解得,或,
    ∴E(﹣4,﹣1),
    画出图形如图所示,

    ∵△PAB∽△PDE,
    ∴∠PAB=∠PDE,
    ∴AB∥DE,
    ∴直线AB与直线DE的一次项系数相等,
    设直线DE的解析式为y=﹣x+b2,
    ∴﹣1=﹣(﹣4)+b2,
    ∴b2=﹣5,
    ∴直线DE的解析式为y=﹣x﹣5,
    ∵点D在直线DE与双曲线的另一个交点,
    ∴解方程组得,或,
    ∴D(﹣1,﹣4),
    则直线AD的解析式为y=9x+5,
    解方程组得,,
    ∴P(﹣,),
    ∴,

    ∴m=.
    三.二次函数综合题(共3小题)
    5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.
    (1)求抛物线的函数表达式;
    (2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;
    (3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.

    【答案】(1)y=﹣x2+1;
    (2)点B的坐标为(﹣4,﹣3)或(﹣2﹣2、5,﹣5﹣2,5)或(﹣2+2,﹣5+2);
    (3)存在,2或 .
    【解答】解:(1)将P(4,﹣3)、A(0,1)代入y=ax2+c,
    ∴16a+1=﹣3,
    解得a=﹣,
    ∴y=﹣x2+1;
    (2)设B(x,y),
    ∵P(4,﹣3),A(0,1),
    ∴AB=,AP=4,BP=,
    当AB=AP时,4=,
    ∵y=﹣x2+1,
    ∴x=4或x=﹣4,
    ∴B(﹣4,﹣3);
    当AB=BP时,=,
    解得x=﹣2+2或x=﹣2﹣2,
    ∴B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);
    综上所述:B点坐标为(﹣4,﹣3)或(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);
    (3)存在常数m,使得OD⊥OE始终成立,理由如下:
    设B(t,kt),C(s,ks),
    联立方程,
    整理得x2+4kx﹣4=0,
    ∴t+s=﹣4k,t•s=﹣4,
    直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,
    ∴D(,m),E(,m),
    过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,
    ∵∠DOE=90°,
    ∴∠DOG+∠EOK=90°,
    ∵∠DOG+∠ODG=90°,
    ∴∠EOK=∠ODG,
    ∴△DOG∽△OEK,
    ∴=,
    ∴m2=﹣,
    ∴m2=4(m﹣1)2,
    解得m=2或m=.

    6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.
    (1)当k=2时,求A,B两点的坐标;
    (2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;
    (3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.

    【答案】(1)A(﹣3,﹣9),B(1,﹣1);
    (2)k的值为或﹣;
    (3)直线AB'经过定点(0,3),理由见解答过程.
    【解答】解:(1)当k=2时,直线为y=2x﹣3,
    由得:或,
    ∴A(﹣3,﹣9),B(1,﹣1);
    (2)当k>0时,如图:

    ∵△B'AB的面积与△OAB的面积相等,
    ∴OB'∥AB,
    ∴∠OB'B=∠B'BC,
    ∵B、B'关于y轴对称,
    ∴OB=OB',∠ODB=∠ODB'=90°,
    ∴∠OB'B=∠OBB',
    ∴∠OBB'=∠B'BC,
    ∵∠ODB=90°=∠CDB,BD=BD,
    ∴△BOD≌△BCD(ASA),
    ∴OD=CD,
    在y=kx﹣3中,令x=0得y=﹣3,
    ∴C(0,﹣3),OC=3,
    ∴OD=OC=,D(0,﹣),
    在y=﹣x2中,令y=﹣得﹣=﹣x2,
    解得x=或x=﹣,
    ∴B(,﹣),
    把B(,﹣)代入y=kx﹣3得:
    ﹣=k﹣3,
    解得k=;
    当k<0时,过B'作B'F∥AB交y轴于F,如图:

    在y=kx﹣3中,令x=0得y=﹣3,
    ∴E(0,﹣3),OE=3,
    ∵△B'AB的面积与△OAB的面积相等,
    ∴OE=EF=3,
    ∵B、B'关于y轴对称,
    ∴FB=FB',∠FGB=∠FGB'=90°,
    ∴∠FB'B=∠FBB',
    ∵B'F∥AB,
    ∴∠EBB'=∠FB'B,
    ∴∠EBB'=∠FBB',
    ∵∠BGE=90°=∠BGF,BG=BG,
    ∴△BGF≌△BGE(ASA),
    ∴GE=GF=EF=,
    ∴OG=OE+GE=,G(0,﹣),
    在y=﹣x2中,令y=﹣得﹣=﹣x2,
    解得x=或x=﹣,
    ∴B(,﹣),
    把B(,﹣)代入y=kx﹣3得:
    ﹣=k﹣3,
    解得k=﹣,
    综上所述,k的值为或﹣;
    (3)直线AB'经过定点(0,3),理由如下:
    由得:x2+kx﹣3=0,
    设x2+kx﹣3=0二根为a,b,
    ∴a+b=﹣k,ab=﹣3,A(a,﹣a2),B(b,﹣b2),
    ∵B、B'关于y轴对称,
    ∴B'(﹣b,﹣b2),
    设直线AB'解析式为y=mx+n,将A(a,﹣a2),B'(﹣b,﹣b2)代入得:

    解得:,
    ∵a+b=﹣k,ab=﹣3,
    ∴m=﹣(a﹣b)=b﹣a==,n=﹣ab=﹣(﹣3)=3,
    ∴直线AB'解析式为y=•x+3,
    令x=0得y=3,
    ∴直线AB'经过定点(0,3).
    7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.
    (1)求抛物线的函数表达式;
    (2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;
    (3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.

    【答案】(1)y=x2﹣x;
    (2)(6,3)或(﹣1,);
    (3)C的横坐标为﹣t﹣+4;当t<0时,点C的横坐标的取值范围是xC≥12.
    【解答】解:(1)∵抛物线y=a(x﹣h)2+k,顶点P的坐标为(2,﹣1),
    ∴h=2,k=﹣1,即抛物线y=a(x﹣h)2+k为y=a(x﹣2)2﹣1,
    ∵抛物线y=a(x﹣h)2+k经过O,即y=a(x﹣2)2﹣1的图象过(0,0),
    ∴0=a(0﹣2)2﹣1,解得a=,
    ∴抛物线的函数表达为y=(x﹣2)2﹣1=x2﹣x;
    (2)在y=x2﹣x中,令y=x得x=x2﹣x,
    解得x=0或x=8,
    ∴B(0,0)或B(8,8),
    ①当B(0,0)时,过B作BC∥AP交抛物线于C,此时∠ABC=∠OAP,如图:

    在y=x2﹣x中,令y=0,得x2﹣x=0,
    解得x=0或x=4,
    ∴A(4,0),
    设直线AP解析式为y=kx+b,将A(4,0)、P(2,﹣1)代入得:
    ,解得,
    ∴直线AP解析式为y=x﹣2,
    ∵BC∥AP,
    ∴设直线BC解析式为y=x+b',将B(0,0)代入得b'=0,
    ∴直线BC解析式为y=x,
    由得(此时为点O,舍去)或,
    ∴C(6,3);
    ②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:

    ∵P(2,﹣1),A(4,0),
    ∴PQ=1,AQ=2,
    Rt△APQ中,tan∠OAP==,
    ∵B(8,8),A(4,0),
    ∴AH=4,BH=8,
    Rt△ABH中,tan∠ABH==,
    ∴∠OAP=∠ABH,
    ∵H关于AB的对称点M,
    ∴∠ABH=∠ABM,
    ∴∠ABM=∠OAP,即C是满足条件的点,
    设M(x,y),
    ∵H关于AB的对称点M,
    ∴AM=AH=4,BM=BH=8,
    ∴,
    两式相减变形可得x=8﹣2y,代入即可解得(此时为H,舍去)或,
    ∴M(,),
    设直线BM解析式为y=cx+d,将M(,),B(8,8)代入得;
    ,解得,
    ∴直线BM解析式为y=x+2,
    解得或(此时为B,舍去),
    ∴C(﹣1,),
    综上所述,C坐标为(6,3)或(﹣1,);
    (3)设BC交y轴于M,过B作BH⊥x轴于H,过M作MN⊥BH于N,如图:

    ∵点B的横坐标为t,
    ∴B(t,t2﹣t),又A(4,0),
    ∴AH=|t﹣4|,BH=|t2﹣t|,OH=|t|=MN,
    ∵∠ABC=90°,
    ∴∠MBN=90°﹣∠ABH=∠BAH,
    且∠N=∠AHB=90°,
    ∴△ABH∽△BMN,
    ∴=,即=
    ∴BN==4,
    ∴NH=t2﹣t+4,
    ∴M(0,t2﹣t+4),
    设直线BM解析式为y=ex+t2﹣t+4,
    将B(t,t2﹣t)代入得t2﹣t=et+t2﹣t+4,
    ∴e=﹣,
    ∴直线BC解析式为y=﹣x+t2﹣t+4,
    由得,
    解得x1=t(B的横坐标),x2=﹣=﹣t﹣+4,
    ∴点C的横坐标为﹣t﹣+4;
    当t<0时,
    xC=﹣t﹣+4
    =()2+()2+4
    =(﹣)2+12,
    ∴=时,xC最小值是12,此时t=﹣4,
    ∴当t<0时,点C的横坐标的取值范围是xC≥12.
    四.三角形综合题(共1小题)
    8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.
    在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.
    【初步感知】
    (1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.
    【深入探究】
    (2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;
    ②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).
    【拓展运用】
    (3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).

    【答案】(1)见解析过程;
    (2)①=,见解析过程;
    ②当点F在射线BC上时,,当点F在CB延长线上时,;
    (3)点M运动的路径长为 .
    【解答】(1)证明:连接CD,

    ∵∠C=90°,AC=BC,AD=DB,
    ∴AB=AC,∠A=∠B=∠ACD=45°,AD=CD=BD,CD⊥AB,
    ∵ED⊥FD,
    ∴∠EDF=∠CDB=90°,
    ∴∠CDE=∠BDF,
    ∴△CDE≌△BDF(ASA),
    ∴CE=BF,
    ∴AE+BF=AE+CE=AC=AB;
    (2)①AE+BF=AB,理由如下:
    过点D作DN⊥AC于N,DH⊥BC于H,

    ∵∠C=90°,AC=BC,
    ∴∠A=∠B=45°,
    ∵DN⊥AC,DH⊥BC,
    ∴△ADN和△BDH是等腰直角三角形,
    ∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,
    ∴△ADN∽△BDH,
    ∴=,
    设AN=DN=x,BH=DH=2x,
    ∴AD=x,BD=2x,
    ∴AB=3x,
    ∵DN⊥AC,DH⊥BC,∠ACB=90°,
    ∴四边形DHCN是矩形,
    ∴∠NDH=90°=∠EDF,
    ∴∠EDN=∠FDH,
    又∵∠END=∠FHD,
    ∴△EDN∽△FDH,
    ∴=,
    ∴FH=2NE,
    ∴AE+BF=x+NE+(2x﹣FH)=2x=AB;
    ②如图4,当点F在射线BC上时,过点D作DN⊥AC于N,DH⊥BC于H,

    ∵∠C=90°,AC=BC,
    ∴∠A=∠B=45°,
    ∵DN⊥AC,DH⊥BC,
    ∴△ADN和△BDH是等腰直角三角形,
    ∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,
    ∴△ADN∽△BDH,
    ∴=,
    设AN=DN=x,BH=DH=nx,
    ∴AD=x,BD=nx,
    ∴AB=(n+1)x,
    ∵DN⊥AC,DH⊥BC,∠ACB=90°,
    ∴四边形DHCN是矩形,
    ∴∠NDH=90°=∠EDF,
    ∴∠EDN=∠FDH,
    又∵∠END=∠FHD,
    ∴△EDN∽△FDH,
    ∴=,
    ∴FH=nNE,
    ∴AE+BF=x﹣NE+(nx+FH)=2x=AB;
    当点F在CB的延长线上时,如图5,

    ∵∠C=90°,AC=BC,
    ∴∠A=∠B=45°,
    ∵DN⊥AC,DH⊥BC,
    ∴△ADN和△BDH是等腰直角三角形,
    ∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,
    ∴△ADN∽△BDH,
    ∴=,
    设AN=DN=x,BH=DH=nx,
    ∴AD=x,BD=nx,
    ∴AB=(n+1)x,
    ∵DN⊥AC,DH⊥BC,∠ACB=90°,
    ∴四边形DHCN是矩形,
    ∴∠NDH=90°=∠EDF,
    ∴∠EDN=∠FDH,
    又∵∠END=∠FHD,
    ∴△EDN∽△FDH,
    ∴=,
    ∴FH=nNE,
    ∴AE﹣BF=x+NE﹣(FH﹣nx)=2x=AB;
    综上所述:当点F在射线BC上时,,当点F在CB延长线上时,;
    (3)如图,连接CD,CM,DM,

    ∵EF的中点为M,∠ACB=∠EDF=90°,
    ∴CM=DM=EF,
    ∴点M在线段CD的垂直平分线上运动,
    如图,当点E'与点A重合时,点F'在BC的延长线上,
    当点E'与点C重合时,点F″在CB的延长线上,
    过点M'作M'R⊥F'C于R,

    ∴M'R∥AC,
    ∴=,
    ∴M'R=1,F'R=CR,
    设AN=DN=x,BH=DH=nx,
    ∴AD=x,BD=nx,
    ∴AB=(n+1)x=2,
    ∴x=,
    ∵F'D=BD=nx,
    ∴F'B=2nx,
    ∴CF'=2nx﹣2,
    ∴CR=nx﹣1=﹣1=,
    由(2)可得:CD==x•,DF″=nDE″=nx•,
    ∴CF″=(1+n2)x,
    ∴CM″===,
    ∴RM″=n,
    ∴M″M'=,
    ∴点M运动的路径长为.
    五.圆的综合题(共2小题)
    9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.
    (1)求证:∠A=∠ACF;
    (2)若AC=8,cos∠ACF=,求BF及DE的长.

    【答案】(1)证明见解析;
    (2)BF=5,DE=.
    【解答】(1)证明:∵=,
    ∴∠BCF=∠FBC,
    ∵∠ACB=90°,
    ∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,
    ∴∠A=∠ACF;

    (2)解:连接CD.
    ∵∠A=∠ACF,∠FBC=∠BCF,
    ∴AF=FC=FB,
    ∴cos∠A=cos∠ACF==,
    ∵AC=8,
    ∴AB=10,BC=6,
    ∵BC是直径,
    ∴∠CDB=90°,
    ∴CD⊥AB,
    ∵S△ABC=•AC•BC=•AB•CD,
    ∴CD==,
    ∴BD===,
    ∵BF=AF=5,
    ∴DF=BF﹣BD=5﹣=,
    ∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,
    ∴∠DEF=∠B=∠BCF,
    ∴DE∥CB,
    ∴△DEF∽△BCF,
    ∴=,
    ∴=,
    ∴DE=.

    10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.
    (1)求证:CD是⊙O的切线;
    (2)若⊙O的半径为,△ABC的面积为2,求CD的长;
    (3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.

    【答案】见试题解答内容
    【解答】(1)证明:连接OC,如图:

    ∵AB为⊙O的直径,
    ∴∠ACB=90°,∠A+∠ABC=90°,
    ∵OB=OC,
    ∴∠ABC=∠BCO,
    又∠BCD=∠A,
    ∴∠BCD+∠BCO=90°,即∠DCO=90°,
    ∴OC⊥CD,
    ∴CD是⊙O的切线;
    (2)过C作CM⊥AB于M,过B作BN⊥CD于N,如图:

    ∵⊙O的半径为,
    ∴AB=2,
    ∵△ABC的面积为2,
    ∴AB•CM=2,即×2•CM=2,
    ∴CM=2,
    Rt△BCM中,∠BCM=90°﹣∠CBA,
    Rt△ABC中,∠A=90°﹣∠CBA,
    ∴∠BCM=∠A,
    ∴tan∠BCM=tanA,即=,
    ∴=,
    解得BM=﹣1,(BM=+1已舍去),
    ∵∠BCD=∠A,∠BCM=∠A,
    ∴∠BCD=∠BCM,
    而∠BMC=∠BNC=90°,BC=BC,
    ∴△BCM≌△BCN(AAS),
    ∴CN=CM=2,BN=BM=﹣1,
    ∵∠DNB=∠DMC=90°,∠D=∠D,
    ∴△DBN∽△DCM,
    ∴==,
    即==,
    解得DN=2﹣2,
    ∴CD=DN+CN=2;
    方法二:过C作CM⊥AB于M,连接OC,如图:

    ∵⊙O的半径为,
    ∴AB=2,
    ∵△ABC的面积为2,
    ∴AB•CM=2,即×2•CM=2,
    ∴CM=2,
    Rt△MOC中,OM==1,
    ∵∠DMC=∠CMO=90°,∠CDM=90°﹣∠DCM=∠OCM,
    ∴△DCM∽△COM,
    ∴=,即=,
    ∴CD=2;
    (3)过C作CM⊥AB于M,过E作EH⊥AB于H,连接OE,如图:

    ∵CM⊥AB,EH⊥AB,
    ∴==,
    ∵=,
    ∴==,
    由(2)知CM=2,BM=﹣1,
    ∴HE=1,MF=2HF,
    Rt△OEH中,OH===2,
    ∴AH=OA﹣OH=﹣2,
    设HF=x,则MF=2x,
    由AB=2可得:BM+MF+HF+AH=2,
    ∴(﹣1)+2x+x+(﹣2)=2,
    解得:x=1,
    ∴HF=1,MF=2,
    ∴BF=BM+MF=(﹣1)+2=+1.
    六.几何变换综合题(共2小题)
    11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.
    【尝试初探】
    (1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.
    【深入探究】
    (2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.
    【拓展延伸】
    (3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).


    【答案】(1)理由见解答;
    (2)tan∠ABE的值是;
    (3)tan∠ABE的值是或.
    【解答】解:(1)∵四边形EBFG和四边形ABCD是矩形,
    ∴∠A=∠BEG=∠D=90°,
    ∴∠ABE+∠AEB=∠AEB+∠DEH=90°,
    ∴∠DEH=∠ABE,
    ∴△ABE∽△DEH,
    ∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;
    (2)如图1,∵H是线段CD中点,

    ∴DH=CH,
    设DH=x,AE=a,则AB=2x,AD=4x,DE=4x﹣a,
    由(1)知:△ABE∽△DEH,
    ∴=,即=,
    ∴2x2=4ax﹣a2,
    ∴2x2﹣4ax+a2=0,
    ∴x==,
    ∵tan∠ABE==,
    当x=时,tan∠ABE==,
    当x=时,tan∠ABE==;
    综上,tan∠ABE的值是.
    (3)分两种情况:
    ①如图2,BH=FH,

    设AB=x,AE=a,
    ∵四边形BEGF是矩形,
    ∴∠BEG=∠G=90°,BE=FG,
    ∴Rt△BEH≌Rt△FGH(HL),
    ∴EH=GH,
    ∵矩形EBFG∽矩形ABCD,
    ∴==n,
    ∴=n,
    ∴=,
    由(1)知:△ABE∽△DEH,
    ∴==,
    ∴=,
    ∴nx=2a,
    ∴=,
    ∴tan∠ABE===;
    ②如图3,BF=FH,

    ∵矩形EBFG∽矩形ABCD,
    ∴∠ABC=∠EBF=90°,=,
    ∴∠ABE=∠CBF,
    ∴△ABE∽△CBF,
    ∴∠BCF=∠A=90°,
    ∴D,C,F共线,
    ∵BF=FH,
    ∴∠FBH=∠FHB,
    ∵EG∥BF,
    ∴∠FBH=∠EHB,
    ∴∠EHB=∠CHB,
    ∵BE⊥EH,BC⊥CH,
    ∴BE=BC,
    由①可知:AB=x,AE=a,BE=BC=nx,
    由勾股定理得:AB2+AE2=BE2,
    ∴x2+a2=(nx)2,
    ∴x=(负值舍),
    ∴tan∠ABE===,
    综上,tan∠ABE的值是或.
    12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.
    (1)如图1,当点A′落在AC的延长线上时,求AA′的长;
    (2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;
    (3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.

    【答案】(1)8;
    (2);
    (3)1.
    【解答】解:(1)∵∠ACB=90°,AB=5,BC=3,
    ∴AC==4,
    ∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,
    ∴∠A'CB=90°,A'B=AB=5,
    Rt△A'BC中,A'C==4,
    ∴AA'=AC+A'C=8;
    (2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:

    ∵△ABC绕点B顺时针旋转得到△A′BC′,
    ∴∠A'BC'=∠ABC,BC'=BC=3,
    ∵CE∥A'B,
    ∴∠A'BC'=∠CEB,
    ∴∠CEB=∠ABC,
    ∴CE=BC=3,
    Rt△ABC中,S△ABC=AC•BC=AB•CD,AC=4,BC=3,AB=5,
    ∴CD==,
    Rt△CED中,DE===,
    同理BD=,
    ∴BE=DE+BD=,C'E=BC'+BE=3+=,
    ∵CE∥A'B,
    ∴=,
    ∴=,
    ∴BM=;
    (3)DE存在最小值1,理由如下:
    过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:

    ∵△ABC绕点B顺时针旋转得到△A′BC′,
    ∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',
    ∴∠BCC'=∠BC'C,
    而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',
    ∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,
    ∴∠ACP=∠A'C'D,
    ∵AP∥A'C',
    ∴∠P=∠A'C'D,
    ∴∠P=∠ACP,
    ∴AP=AC,
    ∴AP=A'C',
    在△APD和△A'C'D中,

    ∴△APD≌△A'C'D(AAS),
    ∴AD=A'D,即D是AA'中点,
    ∵点E为AC的中点,
    ∴DE是△AA'C的中位线,
    ∴DE=A'C,
    要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC=2,
    ∴DE最小为A'C=1.
    七.解直角三角形的应用(共1小题)
    13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.
    如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

    【答案】此时顶部边缘A'处离桌面的高度A'D的长约为19cm.
    【解答】解:∵∠AOB=150°,
    ∴∠AOC=180°﹣∠AOB=30°,
    在Rt△ACO中,AC=10cm,
    ∴AO=2AC=20(cm),
    由题意得:
    AO=A′O=20cm,
    ∵∠A′OB=108°,
    ∴∠A′OD=180°﹣∠A′OB=72°,
    在Rt△A′DO中,A′D=A′O•sin72°≈20×0.95=19(cm),
    ∴此时顶部边缘A'处离桌面的高度A'D的长约为19cm.
    八.解直角三角形的应用-仰角俯角问题(共1小题)
    14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

    【答案】见试题解答内容
    【解答】解:延长BC交MN于点H,AD=BE=3.5,
    设MH=x米,

    ∵∠MEC=45°,
    ∴EH=x米,
    在Rt△MHB中,tan∠MBH==≈0.65,解得x=6.5,
    则MN=1.6+6.5=8.1≈8(米),
    ∴电池板离地面的高度MN的长约为8米.

    相关试卷

    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map