所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
四川省凉山州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开
这是一份四川省凉山州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共31页。试卷主要包含了2023,y=22022,阅读材料,阅读理解题等内容,欢迎下载使用。
四川省凉山州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.整式的混合运算—化简求值(共1小题)
1.(2023•凉山州)先化简,再求值:(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y),其中x=()2023,y=22022.
二.根与系数的关系(共1小题)
2.(2022•凉山州)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.
材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,
∴m+n=1,mn=﹣1,
则m2n+mn2=mn(m+n)=﹣1×1=﹣1.
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2= .x1x2= .
(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.
三.一次函数的应用(共1小题)
3.(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.
(1)求A、B两种类型羽毛球拍的单价.
(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.
四.反比例函数综合题(共1小题)
4.(2023•凉山州)阅读理解题:阅读材料:
如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=,则tanβ=.
证明:设BE=k,
∵tanα=,
∴AB=2k,
易证△AEB≌△EFC(AAS).
∴EC=2k,CF=k,
∴FD=k,AD=3k,
∴tanβ===,
若α+β=45°时,当tanα=,则tanβ=.
同理:若α+β=45°时,当tanα=,则tanβ=.
根据上述材料,完成下列问题:
如图2,直线y=3x﹣9与反比例函数y=(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.
(1)求反比例函数的解析式;
(2)直接写出tan∠BAM、tan∠NAE的值;
(3)求直线AE的解析式.
五.二次函数综合题(共3小题)
5.(2023•凉山州)如图,已知抛物线与x轴交于A(1,0)和B(﹣5,0)两点,与y轴交于点C.直线y=﹣3x+3过抛物线的顶点P.
(1)求抛物线的函数解析式;
(2)若直线x=m(﹣5<m<0)与抛物线交于点E,与直线BC交于点F.
①当EF取得最大值时,求m的值和EF的最大值;
②当△EFC是等腰三角形时,求点E的坐标.
6.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
7.(2021•凉山州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,AC=,OB=OC=3OA.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.
六.全等三角形的判定与性质(共1小题)
8.(2021•凉山州)如图,在四边形ABCD中,∠ADC=∠B=90°,过点D作DE⊥AB于E,若DE=BE.
(1)求证:DA=DC;
(2)连接AC交DE于点F,若∠ADE=30°,AD=6,求DF的长.
七.平行四边形的性质(共1小题)
9.(2023•凉山州)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=10,AC=16,求OE的长.
八.菱形的判定与性质(共1小题)
10.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若AB=8,菱形ADBF的面积为40.求AC的长.
九.切线的判定与性质(共1小题)
11.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为5,AC=8,求S△BDE.
一十.圆的综合题(共1小题)
12.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.
一十一.解直角三角形的应用-坡度坡角问题(共1小题)
13.(2022•凉山州)去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).
一十二.列表法与树状图法(共2小题)
14.(2023•凉山州)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海泸山风景区(以下分别用A、B、C、D表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择A、B、C、D四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A的概率.
15.(2022•凉山州)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:
(1)该班的总人数为 人,并补全条形图(注:在所补小矩形上方标出人数);
(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团.如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.
四川省凉山州2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.整式的混合运算—化简求值(共1小题)
1.(2023•凉山州)先化简,再求值:(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y),其中x=()2023,y=22022.
【答案】2xy,1.
【解答】解:(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)
=4x2+4xy+y2﹣4x2+y2﹣2xy﹣2y2
=2xy,
当x=()2023,y=22022时,
原式=2×()2023×22022
=2××()2022×22022
=2××(×2)2022
=2××12022
=2×
=1.
二.根与系数的关系(共1小题)
2.(2022•凉山州)阅读材料:
材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.
材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.
解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,
∴m+n=1,mn=﹣1,
则m2n+mn2=mn(m+n)=﹣1×1=﹣1.
根据上述材料,结合你所学的知识,完成下列问题:
(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2= .x1x2= ﹣ .
(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.
(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.
【答案】(1),﹣;
(2);
(3).
【解答】解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,
∴x1+x2==,x1x2==﹣,
故答案为:,﹣;
(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,
∴m+n=,mn=﹣,
∴
=
=
=
=;
(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,
∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,
∴s+t=,st=﹣,
∴(s﹣t)2=(s+t)2﹣4st,
(s﹣t)2=()2﹣4×(﹣),
(s﹣t)2=,
∴s﹣t=,
∴
=
=
=
=.
三.一次函数的应用(共1小题)
3.(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.
(1)求A、B两种类型羽毛球拍的单价.
(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.
【答案】(1)A种球拍每副40元,B种球拍每副32元;
(2)费用最少的方案是购买A种球拍20副,B种球拍10副,所需费用1120元.
【解答】解:(1)设A种球拍每副x元,B种球拍每副y元,
,
解得,
答:A种球拍每副40元,B种球拍每副32元;
(2)设购买B型球拍a副,总费用w元,
依题意得30﹣a≥2a,
解得a≤10,
w=40(30﹣a)+32a=﹣8a+1200,
∵﹣8<0,
∴w随a的增大而减小,
∴当a=10时,w最小,w最小=﹣8×10+1200=1120(元),
此时30﹣10=20(副),
答:费用最少的方案是购买A种球拍20副,B种球拍10副,所需费用1120元.
四.反比例函数综合题(共1小题)
4.(2023•凉山州)阅读理解题:阅读材料:
如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=,则tanβ=.
证明:设BE=k,
∵tanα=,
∴AB=2k,
易证△AEB≌△EFC(AAS).
∴EC=2k,CF=k,
∴FD=k,AD=3k,
∴tanβ===,
若α+β=45°时,当tanα=,则tanβ=.
同理:若α+β=45°时,当tanα=,则tanβ=.
根据上述材料,完成下列问题:
如图2,直线y=3x﹣9与反比例函数y=(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.
(1)求反比例函数的解析式;
(2)直接写出tan∠BAM、tan∠NAE的值;
(3)求直线AE的解析式.
【答案】(1)反比例函数的解析式为y=;
(2)tan∠BAM=,tan∠NAE=;
(3)直线AE解析式为y=x+1.
【解答】解:(1)设A(t,3t﹣9),
∴OM=t,AM=3t﹣9,
∵OA=5,
∴t2+(3t﹣9)2=52,
解得t=4或t=1.4,
∴A(4,3)或(1.4,﹣4.8)(此时A在第四象限,不符合题意,舍去),
把A(4,3)代入y=(x>0)得:
3=,
解得m=12,
∴反比例函数的解析式为y=(x>0);
(2)在y=3x﹣9中,令y=0得0=3x﹣9,
解得x=3,
∴B(3,0),
∴OB=3,
由(1)知A(4,3),
∴OM=4,AM=3,
∴BM=OM﹣OB=4﹣3=1,
∴tan∠BAM==,
∵∠ANO=∠NOM=∠OMA=90°,
∴∠MAN=90°,
∵∠BAE=45°,
∴∠BAM+∠NAE=45°,
由若α+β=45°时,当tanα=,则tanβ=可得:
tan∠NAE=;
(3)由(2)知tan∠NAE=,
∴=,
∵A(4,3),
∴AN=4,ON=3,
∴=,
∴NE=2,
∴OE=ON﹣NE=3﹣2=1,
∴E(0,1),
设直线AE解析式为y=kx+b,
把A(4,3),E(0,1)代入得:
,
解得,
∴直线AE解析式为y=x+1.
五.二次函数综合题(共3小题)
5.(2023•凉山州)如图,已知抛物线与x轴交于A(1,0)和B(﹣5,0)两点,与y轴交于点C.直线y=﹣3x+3过抛物线的顶点P.
(1)求抛物线的函数解析式;
(2)若直线x=m(﹣5<m<0)与抛物线交于点E,与直线BC交于点F.
①当EF取得最大值时,求m的值和EF的最大值;
②当△EFC是等腰三角形时,求点E的坐标.
【答案】(1)抛物线函数解析式为y=﹣x2﹣4x+5;
(2)①m的值为﹣,EF的最大值为;
②E的坐标为(﹣4,5)或(﹣5,﹣2+6)或(﹣3,8).
【解答】解:(1)∵抛物线与x轴交于A(1,0)和B(﹣5,0)两点,
∴抛物线对称轴为直线x==﹣2,
在y=﹣3x+3中,令x=﹣2得y=9,
∴抛物线顶点为(﹣2,9),
设抛物线函数解析式为y=a(x+2)2+9,
将A(1,0)代入得:
0=9a+9,
解得a=﹣1,
∴抛物线函数解析式为y=﹣(x+2)2+9=﹣x2﹣4x+5;
(2)①如图:
在y=﹣x2﹣4x+5中,令x=0得y=5,
∴C(0,5),
由B(﹣5,0),C(0,5)得直线BC解析式为y=x+5,
∴E(m,﹣m2﹣4m+5),F(m,m+5),
∴EF=﹣m2﹣4m+5﹣(m+5)=﹣m2﹣5m=﹣(m+)2+,
∵﹣1<0,
∴当m=﹣时,EF取最大值,
∴m的值为﹣,EF的最大值为;
②∵E(m,﹣m2﹣4m+5),F(m,m+5),C(0,5),
∴EF2=(m2+5m)2,EC2=m2+(m2+4m)2,FC2=2m2;
若EF=EC,则(m2+5m)2=m2+(m2+4m)2,
解得m=0(E与C重合,舍去)或m=﹣4,
∴E(﹣4,5);
若EF=FC,则(m2+5m)2=2m2,
解得m=0(舍去)或m=﹣5或m=﹣﹣5(不符合题意,舍去),
∴E(﹣5,﹣2+6);
若EC=FC,则m2+(m2+4m)2=2m2,
解得m=0(舍去)或m=﹣3或m=﹣5(不符合题意,舍去),
∴E(﹣3,8);
综上所述,E的坐标为(﹣4,5)或(﹣5,﹣2+6)或(﹣3,8).
6.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为y=﹣x2+2x+3;
(2)P(2,3);
(3)点M的坐标为(0,).
【解答】解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,
得,
解得:,
∴抛物线解析式为y=﹣x2+2x+3;
(2)∵y=﹣(x﹣1)2+4,
∴C(1,4),抛物线的对称轴为直线x=1,
如图,设CD=t,则D(1,4﹣t),
∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
∴∠PDC=90°,DP=DC=t,
∴P(1+t,4﹣t),
把P(1+t,4﹣t)代入y=﹣x2+2x+3得:
﹣(1+t)2+2(1+t)+3=4﹣t,
整理得t2﹣t=0,
解得:t1=0(舍去),t2=1,
∴P(2,3);
(3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,
∴E点坐标为(1,﹣1),
∴点E关于y轴的对称点F(﹣1,﹣1),
连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,
设直线PF的解析式为y=kx+n,
∴,
解得:,
∴直线PF的解析式为y=x+,
∴点M的坐标为(0,).
7.(2021•凉山州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于C点,AC=,OB=OC=3OA.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣2x+3;
(2)P(﹣,);
(3)Q1(﹣,),Q2(﹣,﹣),Q3(,﹣).
【解答】解:(1)∵OC=3OA,AC=,∠AOC=90°,
∴OA2+OC2=AC2,即OA2+(3OA)2=()2,
解得:OA=1,
∴OC=3,
∴A(1,0),C(0,3),
∵OB=OC=3,
∴B(﹣3,0),
设抛物线解析式为y=a(x+3)(x﹣1),将C(0,3)代入,
得:﹣3a=3,
解得:a=﹣1,
∴y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,
∴该抛物线的解析式为y=﹣x2﹣2x+3;
(2)如图1,过点P作PK∥y轴交BC于点K,
设直线BC解析式为y=kx+n,将B(﹣3,0),C(0,3)代入,
得:,
解得:,
∴直线BC解析式为y=x+3,
设P(t,﹣t2﹣2t+3),则K(t,t+3),
∴PK=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,
∴S△PBC=S△PBK+S△PCK=PK•(t+3)+PK•(0﹣t)=PK=(﹣t2﹣3t),
S△ABC=AB•OC=×4×3=6,
∴S四边形PBAC=S△PBC+S△ABC=(﹣t2﹣3t)+6=﹣(t+)2+,
∵﹣<0,
∴当t=﹣时,四边形PBAC的面积最大,此时点P的坐标为(﹣,);
(3)存在.如图2,分两种情况:点Q在x轴上方或点Q在x轴下方.
①当点Q在x轴上方时,P与Q纵坐标相等,
∴﹣x2﹣2x+3=,
解得:x1=﹣,x2=﹣(舍去),
∴Q1(﹣,),
②当点Q在x轴下方时,P与Q纵坐标互为相反数,
∴﹣x2﹣2x+3=﹣,
解得:x1=﹣,x2=,
∴Q2(﹣,﹣),Q3(,﹣),
综上所述,Q点的坐标为Q1(﹣,),Q2(﹣,﹣),Q3(,﹣).
六.全等三角形的判定与性质(共1小题)
8.(2021•凉山州)如图,在四边形ABCD中,∠ADC=∠B=90°,过点D作DE⊥AB于E,若DE=BE.
(1)求证:DA=DC;
(2)连接AC交DE于点F,若∠ADE=30°,AD=6,求DF的长.
【答案】(1)证明过程见解答;
(2)6﹣6.
【解答】(1)证明:作DG⊥BC,交BC的延长线于点G,如右图所示,
∵DE⊥AB,∠B=90°,DG⊥BC,
∴∠DEB=∠B=∠BGD=90°,
∴四边形DEBG是矩形,
又∵DE=BE,
∴四边形DEBG是正方形,
∴DG=BE,∠EDG=90°,
∴DG=DE,∠EDC+∠CDG=90°,
∵∠ADC=90°,
∴∠EDC+∠ADE=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,
,
∴△ADE≌△CDG(ASA),
∴DA=DC;
(2)∵∠ADE=30°,AD=6,∠DEA=90°,
∴AE=3,DE===3,
由(1)知,△ADE≌△CDG,四边形DEBG是正方形,
∴DG=DE=3,AE=CG=3,BE=DG=BG=3,
∴BC=BG﹣CG=3﹣3,AB=AE+BE=3+3,
∵FE⊥AB,BC⊥AB,
∴FE∥CB,
∴△AEF∽△ABC,
∴,
即,
解得EF=6﹣3,
∴DF=DE﹣EF=3﹣(6﹣3)=3﹣6+3=6﹣6,
即DF的长是6﹣6.
七.平行四边形的性质(共1小题)
9.(2023•凉山州)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=10,AC=16,求OE的长.
【答案】(1)证明见解析;
(2).
【解答】(1)证明:∵∠CAB=∠ACB,
∴AB=CB,
∴▱ABCD是菱形,
∴AC⊥BD;
(2)解:由(1)可知,▱ABCD是菱形,
∴OA=OC=AC=8,AC⊥BD,
∴∠AOB=∠BOE=90°,
∴OB===6,
∵BE⊥AB,
∴∠EBA=90°,
∴∠BEO+∠BAO=∠ABO+∠BAO=90°,
∴∠BEO=∠ABO,
∴△BOE∽△AOB,
∴=,
即=,
解得:OE=,
即OE的长为.
八.菱形的判定与性质(共1小题)
10.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若AB=8,菱形ADBF的面积为40.求AC的长.
【答案】(1)证明过程见解答;
(2)AC的长为10.
【解答】(1)证明:∵AF∥BC,
∴∠AFC=∠FCD,∠FAE=∠CDE,
∵点E是AD的中点,
∴AE=DE,
∴△FAE≌△CDE(AAS),
∴AF=CD,
∵点D是BC的中点,
∴BD=CD,
∴AF=BD,
∴四边形AFBD是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=BD=BC,
∴四边形ADBF是菱形;
(2)解:∵四边形ADBF是菱形,
∴菱形ADBF的面积=2△ABD的面积,
∵点D是BC的中点,
∴△ABC的面积=2△ABD的面积,
∴菱形ADBF的面积=△ABC的面积=40,
∴AB•AC=40,
∴×8•AC=40,
∴AC=10,
∴AC的长为10.
九.切线的判定与性质(共1小题)
11.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为5,AC=8,求S△BDE.
【答案】(1)详见解答;
(2).
【解答】解:(1)连接OE,
∵∠C=90°,
∴∠2+∠AEC=90°,
又∵OA=OE,
∴∠1=∠OEA,
∵∠1=∠2,
∴∠AEC+∠OEA=90°,
即OE⊥BC,
∴BC是⊙O的切线;
(2)过点E作EM⊥AB,垂足为M,
∵∠1=∠2,∠C=∠AED=90°,
∴△ACE∽△AED,
∴=,
即=,
∴AE=4,
由勾股定理得,
CE==4=EM,
DE==2,
∵∠DEB=∠1,∠B=∠B,
∴△BDE∽△BEA,
∴==,
设BD=x,则BE=2x,
在Rt△BOE中,由勾股定理得,
OE2+BE2=OB2,
即52+(2x)2=(5+x)2,
解得x=,
∴S△BDE=BD•EM
=××4
=.
一十.圆的综合题(共1小题)
12.(2022•凉山州)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6.
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交⊙M于点D,连接CD,求直线CD的解析式.
【答案】(1)⊙M与x轴相切.
(2)AB=6.
(3)直线CD的解析式为:y=﹣x+2.
【解答】解:(1)猜测⊙M与x轴相切,理由如下:
如图,连接OM,
∵AC平分∠OAM,
∴∠OAC=∠CAM,
又∵MC=AM,
∴∠CAM=∠ACM,
∴∠OAC=∠ACM,
∴OA∥MC,
∵OA⊥x轴,
∴MC⊥x轴,
∵CM是半径,
∴⊙M与x轴相切.
(2)如图,过点M作MN⊥y轴于点N,
∴AN=BN=AB,
∵∠MCO=∠AOC=∠MNA=90°,
∴四边形MNOC是矩形,
∴NM=OC,MC=ON=5,
设AO=m,则OC=6﹣m,
∴AN=5﹣m,
在Rt△ANM中,由勾股定理可知,AM2=AN2+MN2,
∴52=(5﹣m)2+(6﹣m)2,
解得m=2或m=9(舍去),
∴AN=3,
∴AB=6.
(3)如图,连接AD与CM交于点E,
∵BD是直径,
∴∠BAD=90°,
∴AD∥x轴,
∴AD⊥MC,
由勾股定理可得AD=8,
∴D(8,﹣2).
由(2)可得C(4,0),
设直线CD的解析式为:y=kx+b,
∴,解得.
∴直线CD的解析式为:y=﹣x+2.
一十一.解直角三角形的应用-坡度坡角问题(共1小题)
13.(2022•凉山州)去年,我国南方某地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C处压折,塔尖恰好落在坡面上的点B处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B处测得BC与水平线的夹角为45°,塔基A所在斜坡与水平线的夹角为30°,A、B两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).
【答案】压折前该输电铁塔的高度是(8+8+8)米.
【解答】解:由已知可得,
BD∥EF,AB=16米,∠E=30°,∠BDA=∠BDC=90°,
∴∠E=∠DBA=30°,
∴AD=8米,
∴BD===8(米),
∵∠CBD=45°,∠CDB=90°,
∴∠C=∠CBD=45°,
∴CD=BD=8米,
∴BC===8(米),
∴AC+CB=AD+CD+CB=(8+8+8)米,
答:压折前该输电铁塔的高度是(8+8+8)米.
一十二.列表法与树状图法(共2小题)
14.(2023•凉山州)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海泸山风景区(以下分别用A、B、C、D表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择A、B、C、D四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择A的概率.
【答案】(1)600;
(2)见解答;
(3).
【解答】解:(1)60÷10%=600(人),
所以本次参加抽样调查的游客有600人;
(2)C景点的人数为600﹣180﹣60﹣240=120(人),
C景点的人数所占的百分比为×100%=20%,
A景点的人数所占的百分比为×100%=30%,
两幅不完整的统计图补充为:
(3)画树状图为:
共有12种等可能的结果,他第一个景区恰好选择A的结果数为3,
所以他第一个景区恰好选择A的概率==.
15.(2022•凉山州)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:
(1)该班的总人数为 50 人,并补全条形图(注:在所补小矩形上方标出人数);
(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团.如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.
【答案】(1)50,补全图形见解答;
(2).
【解答】解:(1)该班总人数为12÷24%=50(人),
则选择“演讲”人数为50×16%=8(人),
补全图形如下:
故答案为:50;
(2)设美术社团为A,演讲社团为B,声乐社团为C.画树状图为:
由树状图知,共有12种等可能的结果数,其中选出的两人中恰好有1人参加美术社团、1人参加演讲社团的有4种结果,
所以选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率为=.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。