所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
四川省宜宾市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开
这是一份四川省宜宾市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共24页。试卷主要包含了的图象交于点C、D,,连结BC、BE、CE,,其顶点为点D,连结AC,已知等内容,欢迎下载使用。
四川省宜宾市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.反比例函数与一次函数的交点问题(共1小题)
1.(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.
(1)求一次函数和反比例函数的表达式;
(2)求△OCD的面积.
二.二次函数综合题(共3小题)
2.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.
3.(2023•宜宾)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(2,0),且经过点C(﹣2,6).
(1)求抛物线的表达式;
(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q′,求△APQ′的面积;
(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.
4.(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.
(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;
(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;
(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.
三.全等三角形的判定与性质(共1小题)
5.(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.
四.切线的判定与性质(共1小题)
6.(2023•宜宾)如图,以AB为直径的⊙O上有两点E、F,=,过点E作直线CD⊥AF交AF的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.
(1)求证:CD是⊙O的切线;
(2)求证:EM=EN;
(3)如果N是CM的中点,且AB=9,求EN的长.
五.圆的综合题(共1小题)
7.(2021•宜宾)如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若tan∠ADC=,AC=2,求⊙O的半径;
(3)如图2,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连结BE.求sin∠DBE的值.
六.相似三角形的判定与性质(共1小题)
8.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.
(1)求证:DE是⊙O的切线;
(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.
七.解直角三角形的应用-仰角俯角问题(共1小题)
9.(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)
八.列表法与树状图法(共1小题)
10.(2021•宜宾)为帮助学生养成热爱美、发现美的艺术素养,某校开展了“一人一艺”的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).
(1)张老师调查的学生人数是 .
(2)若该校共有学生1000名,请估计有多少名学生选修泥塑;
(3)现有4名学生,其中2人选修书法,1人选修绘画,1人选修摄影,张老师要从这4人中任选2人了解他们对艺术选修课的看法,请用画树状图或列表的方法,求所选2人都是选修书法的概率.
四川省宜宾市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.反比例函数与一次函数的交点问题(共1小题)
1.(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.
(1)求一次函数和反比例函数的表达式;
(2)求△OCD的面积.
【答案】(1)y=﹣2x+8,y=;
(2)8.
【解答】解:(1)在Rt△AOB中,tan∠BAO==2,
∵A(4,0),
∴OA=4,OB=8,
∴B(0,8),
∵A,B两点在直线y=ax+b上,
∴,
∴,
∴直线AB的解析式为y=﹣2x+8,
过点C作CE⊥OA于点E,
∵BC=3AC,
∴AB=4AC,
∴CE∥OB,
∴==,
∴CE=2,
∴C(3,2),
∴k=3×2=6,
∴反比例函数的解析式为y=;
(2)由,解得或,
∴D(1,6),
过点D作DF⊥y轴于点F,
∴S△OCD=S△AOB﹣S△BOD﹣S△COA
=•OA•OB﹣•OB•DF﹣•OA•CE
=×4×8﹣×8×1﹣×4×2
=8
二.二次函数综合题(共3小题)
2.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.
【答案】(1)y=x2+2x+6;
(2)△BCE是直角三角形;证明见解答;
(3)BF==.
【解答】解:(1)∵抛物线的顶点坐标为E(2,8),
∴设该抛物线的表达式为y=a(x﹣2)2+8,
∵与y轴交于点C(0,6),
∴把点C(0,6)代入得:a=﹣,
∴该抛物线的表达式为y=x2+2x+6;
(2)△BCE是直角三角形.理由如下:
∵抛物线与x轴分别交于A、B两点,
∴令y=0,则﹣(x﹣2)2+8=0,
解得:x1=﹣2,x2=6,
∴A(﹣2,0),B(6,0),
∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,
∴BE2=BC2+CE2,
∴∠BCE=90°,
∴△BCE是直角三角形;
(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:
如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,
则BF的长即为所求.理由如下:
连结CP,∵CP为半径,
∴==,
又∵∠FCP=∠PCE,
∴△FCP∽△PCE,
∴==,即FP=EP,
∴BF=BP+EP,
由“两点之间,线段最短”可得:
BF的长即BP+EP为最小值.
∵CF=CE,E(2,8),
∴由比例性质,易得F(,),
∴BF==.
3.(2023•宜宾)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(2,0),且经过点C(﹣2,6).
(1)求抛物线的表达式;
(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q′,求△APQ′的面积;
(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.
【答案】(1)抛物线的表达式为y=﹣x2﹣x+6;
(2)△APQ′的面积为;
(3)M(0,12﹣4).
【解答】解:(1)把A(﹣4,0)、B(2,0),C(﹣2,6)代入y=ax2+bx+c得:
,
解得,
∴抛物线的表达式为y=﹣x2﹣x+6;
(2)设抛物线的对称轴交x轴于K,如图:
∵抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(2,0),
∴抛物线的对称轴为直线x==﹣1,
∴K(﹣1,0),
∴AK=3,
设N(t,﹣t2﹣t+6),
设AN的函数表达式为y=kx+n,把A(﹣4,0),N(t,﹣t2﹣t+6)代入得:
,
解得,
∴AN的函数表达式为y=(﹣t+)x﹣3t+6,
在y=(﹣t+)x﹣3t+6中,令x=﹣1得y=﹣t+,
∴P(﹣1,﹣t+),
同理可得Q(﹣1,t+9),
∴Q关于x轴的对称点Q'坐标为(﹣1,﹣t﹣9),
∴PQ'=﹣t+﹣(﹣t﹣9)=,
∴S△APQ'=××3=;
∴△APQ′的面积为;
(3)当△ACM的外接圆与y轴相切时,切点即为使∠AMC最大的点M,如图:
∴TM⊥y轴,
设T(p,q),则TM=﹣p,
∵AT=CT,A(﹣4,0),C(﹣2,6),
∴(p+4)2+q2=(p+2)2+(q﹣6)2,
∴q=﹣p+2,
∴T(p,﹣p+2),
∵TM=AT,
∴p2=(p+4)2+(﹣p+2)2,
解得p=﹣30+12或p=﹣30﹣12(不符合题意,舍去),
∴﹣p+2=﹣(﹣30+12)+2=12﹣4,
∴M(0,12﹣4).
4.(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.
(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;
(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;
(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.
【答案】(1)y=﹣x2+2x+3,顶点D的坐标为(1,4);
(2)点F的坐标为(﹣2,﹣5)或(4,﹣5);
(3).
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(3,0)、B(﹣1,0),C(0,3),
∴,
解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4);
(2)设直线AC的解析式为y=kx+b,
把A(3,0),C(0,3)代入,得,
∴,
∴直线AC的解析式为y=﹣x+3,
过点F作FG⊥DE于点G,
∵以A,C,E,F为顶点的四边形是以AC为边的平行四边形,
∴AC=EF,AC∥EF,
∵OA∥FG,
∴∠OAC=∠GFE,
∴△OAC≌△GFE(AAS),
∴OA=FG=3,
设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),
∴FG=|m﹣1|=3,
∴m=﹣2或m=4,
当m=﹣2时,﹣m2+2m+3=﹣5,
∴F1(﹣2,﹣5),
当m=4时,﹣m2+2m+3=﹣5,
∴F2(4,﹣5)
综上所述,满足条件点F的坐标为(﹣2,﹣5)或(4,﹣5);
(3)由题意,M(1,﹣1),F2(4,﹣5),F1(﹣2,﹣5)关于对称轴直线x=1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F1作F1N⊥F2M于点N,交对称轴于点P,连接PF2.则MH=4,HF2=3,MF2=5,
在Rt△MHF2中,sin∠HMF2===,则在Rt△MPN中,sin∠PMN==,
∴PN=PM,
∵PF1=PF2,
∴PF+PM=PF2+PN=F1N为最小值,
∵=×6×4=×5×F1N,
∴F1N=,
∴PF+PM的最小值为.
三.全等三角形的判定与性质(共1小题)
5.(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.
【答案】证明见解析.
【解答】证明:∵AB∥DE,
∴∠A=∠EDF.
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS).
∴AC=DF,
∴AC﹣DC=DF﹣DC,
即:AD=CF.
四.切线的判定与性质(共1小题)
6.(2023•宜宾)如图,以AB为直径的⊙O上有两点E、F,=,过点E作直线CD⊥AF交AF的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.
(1)求证:CD是⊙O的切线;
(2)求证:EM=EN;
(3)如果N是CM的中点,且AB=9,求EN的长.
【答案】(1)(2)证明见解答过程;
(3)EN的长为6.
【解答】(1)证明:连接OE,如图:
∵=,
∴∠FAE=∠EAB,
∵OA=OE,
∴∠AEO=∠EAB,
∴∠FAE=∠AEO,
∴AF∥OE,
∵CD⊥AF,
∴OE⊥CD,
∵OE是⊙O的半径,
∴CD是⊙O的切线;
(2)证明:如图:
由(1)知CD是⊙O的切线,
∴∠CEB=∠EAC(弦切角定理),
∵CM平分∠ACD,
∴∠ECM=∠ACM,
∴∠CEB+∠ECM=∠EAC+∠ACM,
∴∠ENM=∠EMN,
∴EM=EN;
(3)解:如图:
由(2)知EM=EN,∠EMN=∠ENM,
∴∠EMN=∠BNC,
∵∠ECM=∠BCN,
∴△EMC∽△BNC,
∴==,
∵N是CM的中点,
∴===2,
∴EM=2BN,CE=2BC,
∵∠BEC=∠EAB,∠BCE=∠ECA,
∴△BEC∽△EAC,
∴===,
∴AE=2BE,
在Rt△ABE中,AE2+BE2=AB2,
∴(2BE)2+BE2=(9)2,
∴BE=9,
∵EN=EM=2BN,
∴EN=BE=6.
∴EN的长为6.
五.圆的综合题(共1小题)
7.(2021•宜宾)如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若tan∠ADC=,AC=2,求⊙O的半径;
(3)如图2,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连结BE.求sin∠DBE的值.
【答案】(1)CD与⊙O相切,理由见解答;(2)3;(3).
【解答】解:(1)CD与⊙O相切,理由:
如图1,连接OD,
∵OB=OD,
∴∠ODB=∠CBD,
∵∠CDA=∠CBD,
∴∠CDA=∠ODB,
∵AB为⊙O的直径,
∴∠ADB=∠ADO+∠ODB=90°,
∴∠CDA+∠ADO=90°,
∴∠CDO=90°,
∴OD⊥CD,
∴CD与⊙O相切;
(2)由(1)知,∠CBD=∠ADC,
∵tan∠ADC=,
∴tan∠CBD=,
在Rt△ADB中,tan∠CBD==,
∵∠C=∠C,∠ADC=∠CBD,
∴△CAD∽△CDB,
∴,
∴CD=2CA=4,
∴CB=2CD=8,
∴AB=CB﹣CA=8﹣2=6,
∴OA=OB=AB=3,
∴⊙O的半径为3;
(3)如图2,连接OE,过点E作EG⊥BD于G,
∵DE平分∠ADB,
∴∠ADE=∠BDE=45°,
∴∠BOE=2∠BDE=90°,
∴BE==3,
在Rt△ABD中,AD2+BD2=AB2=62,
∵,
∴AD=,BD=,
∵EG⊥BD,∠BDE=45°,
∴∠DEG=∠BDE=45°,
∴DG=EG,
设DG=EG=x,则BG=BD﹣DG=﹣x,
在Rt△BEG中,EG2+BG2=BE2=(3)2=18,
∴x2+(﹣x)2=18,
∴x=或x=(舍),
∴EG=,
∴sin∠DBE==.
六.相似三角形的判定与性质(共1小题)
8.(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.
(1)求证:DE是⊙O的切线;
(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.
【答案】(1)证明过程见解答;
(2).
【解答】(1)证明:连接OC,如图所示,
∵EF⊥AB,
∴∠GFA=90°,
∴∠A+∠AGF=90°,
∵EG=EC,OA=OC,
∴∠EGC=∠ECG,∠A=∠OCA,
又∵∠EGC=∠AGF,
∴∠A+∠EGC=90°,
∴∠OCA+∠ECG=90°,
∠OCE=90°,
∴DE是⊙O的切线;
(2)解:由(1)知,DE是⊙O的切线,
∴∠OCD=90°,
∵BD=4,sin∠D=,OC=OB,
∴=,
即=,
解得OC=2,
∴OD=6,
∴DC===4,
∵点F为OA的中点,OA=OC,
∴OF=1,
∴DF=7,
∵∠EFD=∠OCD,∠EDF=∠ODC,
∴△EFD∽△OCD,
∴,
即,
解得DE=,
∴EC=ED﹣DC=﹣4=,
即EC的长是.
七.解直角三角形的应用-仰角俯角问题(共1小题)
9.(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)
【答案】东楼的高度DE约为40米.
【解答】解:由已知可得,
tan∠BAF==,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,
设BF=7a米,AF=24a米,
∴(7a)2+(24a)2=252,
解得a=1,
∴AF=24米,BF=7米,
∵∠DAC=45°,∠C=90°,
∴∠DAC=∠ADC=45°,
∴AC=DC,
设DE=x米,则DC=(x+7)米,BE=CF=x+7﹣24=(x﹣17)米,
∵tan∠DBE==,
∴tan60°=,
解得x≈40,
答:东楼的高度DE约为40米.
八.列表法与树状图法(共1小题)
10.(2021•宜宾)为帮助学生养成热爱美、发现美的艺术素养,某校开展了“一人一艺”的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).
(1)张老师调查的学生人数是 50名 .
(2)若该校共有学生1000名,请估计有多少名学生选修泥塑;
(3)现有4名学生,其中2人选修书法,1人选修绘画,1人选修摄影,张老师要从这4人中任选2人了解他们对艺术选修课的看法,请用画树状图或列表的方法,求所选2人都是选修书法的概率.
【答案】(1)50名;
(2)240名;
【解答】解:(1)张老师调查的学生人数为:10÷20%=50(名),
故答案为:50名;
(2)条形统计图中D的人数为:50﹣10﹣6﹣14﹣8=12(名),
∴1000×=240(名),
即估计有240名学生选修泥塑;
(3)把2人选修书法的记为A、B,1人选修绘画的记为C,1人选修摄影的记为D,
画树状图如图:
共有12种等可能的结果,所选2人都是选修书法的结果有2种,
∴所选2人都是选修书法的概率为=.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。