所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
重庆市a卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
展开
这是一份重庆市a卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共16页。试卷主要包含了﹣n=x﹣y﹣z+m﹣n,…等内容,欢迎下载使用。
重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
一.规律型:图形的变化类(共2小题)
1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )
A.39 B.44 C.49 D.54
2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )
A.32 B.34 C.37 D.41
二.整式的加减(共2小题)
3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:
①存在“绝对操作”,使其运算结果与原多项式相等;
②不存在“绝对操作”,使其运算结果与原多项式之和为0;
③所有的“绝对操作”共有7种不同运算结果.
其中正确的个数是( )
A.0 B.1 C.2 D.3
4.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….
下列说法:
①至少存在一种“加算操作”,使其运算结果与原多项式相等;
②不存在任何“加算操作”,使其运算结果与原多项式之和为0;
③所有可能的“加算操作”共有8种不同运算结果.
其中正确的个数是( )
A.0 B.1 C.2 D.3
三.分式方程的解(共2小题)
5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )
A.﹣26 B.﹣24 C.﹣15 D.﹣13
6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )
A.5 B.8 C.12 D.15
四.反比例函数系数k的几何意义(共1小题)
7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )
A. B. C.7 D.
五.反比例函数图象上点的坐标特征(共1小题)
8.(2023•重庆)反比例函数y=﹣的图象一定经过的点是( )
A.(1,4) B.(﹣1,﹣4) C.(﹣2,2) D.(2,2)
六.正方形的性质(共3小题)
9.(2023•重庆)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于( )
A.2α B.90°﹣2α C.45°﹣α D.90°﹣α
10.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为( )
A.45° B.60° C.67.5° D.77.5°
11.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1 B. C.2 D.2
七.圆内接四边形的性质(共1小题)
12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )
A.80° B.100° C.110° D.120°
八.切线的性质(共1小题)
13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )
A.3 B.4 C.3 D.4
重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
参考答案与试题解析
一.规律型:图形的变化类(共2小题)
1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )
A.39 B.44 C.49 D.54
【答案】B
【解答】解:由图可得,图案①有:4+5=9根小木棒,
图案②有:4+5×2=14根小木棒,
图案③有:4+5×3=19根小木棒,
…,
∴第n个图案有:(4+5n)根小木棒,
∴第⑧个图案有:4+5×8=44根小木棒,
故选:B.
2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )
A.32 B.34 C.37 D.41
【答案】C
【解答】解:由题知,第①个图案中有5个正方形,
第②个图案中有9个正方形,
第③个图案中有13个正方形,
第④个图案中有17个正方形,
…,
第n个图案中有(4n+1)个正方形,
∴第⑨个图案中正方形的个数为4×9+1=37,
故选:C.
二.整式的加减(共2小题)
3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:
①存在“绝对操作”,使其运算结果与原多项式相等;
②不存在“绝对操作”,使其运算结果与原多项式之和为0;
③所有的“绝对操作”共有7种不同运算结果.
其中正确的个数是( )
A.0 B.1 C.2 D.3
【答案】C
【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.
若使其运算结果与原多项式之和为0,需出现﹣x,
显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.
当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;
有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.
故选:C.
4.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….
下列说法:
①至少存在一种“加算操作”,使其运算结果与原多项式相等;
②不存在任何“加算操作”,使其运算结果与原多项式之和为0;
③所有可能的“加算操作”共有8种不同运算结果.
其中正确的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,
故①正确;
②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,
故不存在任何“加算操作”,使其运算结果与原多项式之和为0;
故②正确;
③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,
∴2×2×2=8种,
所有可能的加括号的方法最多能得到8种不同的结果.
故选:D.
三.分式方程的解(共2小题)
5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )
A.﹣26 B.﹣24 C.﹣15 D.﹣13
【答案】D
【解答】解:解不等式组得:,
∵不等式组的解集为x≤﹣2,
∴>﹣2,
∴a>﹣11,
解分式方程=﹣2得:y=,
∵y是负整数且y≠﹣1,
∴是负整数且≠﹣1,
∴a=﹣8或﹣5,
∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,
故选:D.
6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )
A.5 B.8 C.12 D.15
【答案】B
【解答】解:,
解不等式①得:x≥6,
解不等式②得:x>,
∵不等式组的解集为x≥6,
∴6,
∴a<7;
分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),
解得:y=,
∵方程的解是正整数,
∴>0,
∴a>﹣5;
∵y﹣1≠0,
∴1,
∴a≠﹣3,
∴﹣5<a<7,且a≠﹣3,
∴能使是正整数的a是:﹣1,1,3,5,
∴和为8,
故选:B.
四.反比例函数系数k的几何意义(共1小题)
7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )
A. B. C.7 D.
【答案】A
【解答】解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,
∵AB∥x轴,AE⊥CD,AB∥CD,
∴AG⊥x轴.
∵AO⊥AD,
∴∠DAE+∠OAG=90°.
∵AE⊥CD,
∴∠DAE+∠D=90°.
∴∠D=∠OAG.
在△DAE和△AOG中,
.
∴△DAE≌△AOG(AAS).
∴DE=AG,AE=OG.
∵四边形ABCD是菱形,DE=4CE,
∴AD=CD=DE.
设DE=4a,则AD=OA=5a.
∴OG=AE=.
∴EG=AE+AG=7a.
∴E(3a,7a).
∵反比例函数y=(x>0)的图象经过点E,
∴k=21a2.
∵AG⊥GH,FH⊥GH,AF⊥AG,
∴四边形AGHF为矩形.
∴HF=AG=4a.
∵点F在反比例函数y=(x>0)的图象上,
∴x=.
∴F().
∴OH=a,FH=4a.
∴GH=OH﹣OG=.
∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,
∴.
××﹣=.
解得:a2=.
∴k=21a2=21×=.
故选:A.
五.反比例函数图象上点的坐标特征(共1小题)
8.(2023•重庆)反比例函数y=﹣的图象一定经过的点是( )
A.(1,4) B.(﹣1,﹣4) C.(﹣2,2) D.(2,2)
【答案】C
【解答】解:∵反比例函数y=﹣,
∴k=﹣4,
A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;
B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;
C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;
D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.
故选:C.
六.正方形的性质(共3小题)
9.(2023•重庆)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于( )
A.2α B.90°﹣2α C.45°﹣α D.90°﹣α
【答案】A
【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,
将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:
则AF=AG,∠DAF=∠BAG,
∵∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠GAE=∠FAE=45°,
在△GAE和△FAE中,
,
∴△GAE≌△FAE(SAS),
∴∠AEF=∠AEG,
∵∠BAE=α,
∴∠AEB=90°﹣α,
∴∠AEF=∠AEB=90°﹣α,
∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,
故选:A.
10.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为( )
A.45° B.60° C.67.5° D.77.5°
【答案】C
【解答】解:∵四边形ABCD是正方形,
∴AD=BA,∠DAF=∠ABE=90°,
在△DAF和△ABE中,
,
△DAF≌△ABE(SAS),
∠ADF=∠BAE,
∵AE平分∠BAC,四边形ABCD是正方形,
∴∠BAE=∠BAC=22.5°,∠ADC=90°,
∴∠ADF=22.5°,
∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,
故选:C.
11.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1 B. C.2 D.2
【答案】C
【解答】解:∵四边形ABCD是正方形,
∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,
∴∠DON+∠CON=90°,
∵ON⊥OM,
∴∠MON=90°,
∴∠DON+∠DOM=90°,
∴∠DOM=∠CON,
在△DOM和△CON中,
,
∴△DOM≌△CON(ASA),
∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,
∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,
∴△DOC的面积是1,
∴正方形ABCD的面积是4,
∴AB2=4,
∴AB=2,
故选:C.
七.圆内接四边形的性质(共1小题)
12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )
A.80° B.100° C.110° D.120°
【答案】B
【解答】解:∵四边形ABCD内接于⊙O,
∴∠A+∠C=180°,
∵∠A=80°,
∴∠C=100°,
故选:B.
八.切线的性质(共1小题)
13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )
A.3 B.4 C.3 D.4
【答案】C
【解答】解:如图,连接OB,
∵AB是⊙O的切线,B为切点,
∴OB⊥AB,
∴AB2=OA2﹣OB2,
∵OB和OD是半径,
∴∠D=∠OBD,
∵∠A=∠D,
∴∠A=∠D=∠OBD,
∴△OBD∽△BAD,AB=BD,
∴OD:BD=BD:AD,
∴BD2=OD•AD,
即OA2﹣OB2=OD•AD,
设OD=x,
∵AC=3,
∴AD=2x+3,OB=x,OA=x+3,
∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),
∴OA=6,OB=3,
∴AB2=OA2﹣OB2=27,
∴AB=3,
故选:C.
相关试卷
这是一份陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共15页。
这是一份内蒙古赤峰2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类(含答案),共23页。
这是一份河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共27页。