所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编
重庆市b卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
展开
这是一份重庆市b卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共37页。试卷主要包含了,所以4135不是“共生数”,,与y轴交于点C等内容,欢迎下载使用。
重庆市B卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.因式分解的应用(共2小题)
1.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.
例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.
又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.
(1)判断357,441是否是“和倍数”?说明理由;
(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.
2.(2021•重庆)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”.例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”;m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”.
(1)判断5313,6437是否为“共生数”?并说明理由;
(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F(n)=.求满足F(n)各数位上的数字之和是偶数的所有n.
二.一元二次方程的应用(共1小题)
3.(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.
(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?
(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.
三.分式方程的应用(共1小题)
4.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.
(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?
(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?
四.反比例函数与一次函数的交点问题(共1小题)
5.(2021•重庆)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.
x
…
﹣2
﹣1
0
1
2
3
4
5
…
y
…
6
5
4
a
2
1
b
7
…
(1)写出函数关系式中m及表格中a,b的值:
m= ,a= ,b= ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式x+|﹣2x+6|+m>的解集.
五.二次函数综合题(共3小题)
6.(2023•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).
(1)求该抛物线的表达式;
(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;
(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.
7.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
(1)求抛物线的函数表达式;
(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;
(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.
8.(2021•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,在y1上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
六.作图—基本作图(共1小题)
9.(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:
证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)
在△ADC和△CFA中,
∵AD⊥BC,
∴∠ADC=90°.
∵∠F=90°,
∴① .
∵EF∥BC,
∴② .
又∵③ ,
∴△ADC≌△CFA(AAS).
同理可得:④ .
S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.
七.几何变换综合题(共3小题)
10.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.
(1)如图1,求证:∠CBE=∠CAF;
(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;
(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.
11.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.
(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;
(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;
(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.
12.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.
(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.
①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;
②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;
(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP最小时,直接写出△DPN的面积.
八.解直角三角形的应用-方向角问题(共1小题)
13.(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.
(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);
(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)
重庆市B卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.因式分解的应用(共2小题)
1.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.
例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.
又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.
(1)判断357,441是否是“和倍数”?说明理由;
(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.
【答案】(1)357不是“和倍数”;441是9的“和倍数”;
(2)732或372或516或156.
【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,
∴357不是“和倍数”;
∵441÷(4+4+1)=441÷9=49,
∴441是9的“和倍数”;
(2)由题意得:a+b+c=12,a>b>c,
由题意得:F(A)=,G(A)=,
∴===,
∵a+c=12﹣b,为整数,
∴====7+(1﹣b),
∵1<b<9,
∴b=3,5,7,
∴a+c=9,7,5,
①当b=3,a+c=9时,(舍),,
则A=732或372;
②当b=5,a+c=7时,,
则A=516或156;
③当b=7,a+c=5时,此种情况没有符合的值;
综上,满足条件的所有数A为:732或372或516或156.
2.(2021•重庆)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”.例如:m=3507,因为3+7=2×(5+0),所以3507是“共生数”;m=4135,因为4+5≠2×(1+3),所以4135不是“共生数”.
(1)判断5313,6437是否为“共生数”?并说明理由;
(2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记F(n)=.求满足F(n)各数位上的数字之和是偶数的所有n.
【答案】(1)5313是“共生数”,6437不是“共生数”;
(2)2148或3069.
【解答】解:(1)5313是“共生数”,6437不是“共生数”,
∵5+3=2×(3+1),
∴5313是“共生数”,
∵6+7≠2×(3+4),
∴6437不是“共生数”;
(2)∵n是“共生数”,根据题意,个位上的数字要大于百位上的数字,
设n的千位上的数字为a,则十位上的数字为2a,(1≤a≤4),
设n的百位上的数字为b,
∵个位和百位都是0﹣9的数字,
∴个位上的数字为9﹣b,且9﹣b>b,
∴0≤b≤4,
∴n=1000a+100b+20a+9﹣b,
∴F(n)==340a+33b+3,
由于n是“共生数”,
∴a+9﹣b=2×(2a+b),
即a+b=3,
可能的情况有:
,
当a=1,b=2时,n的值为1227,则F(n)的值为409,各数位上数字之和不是偶数,舍去,
当a=2,b=1时,n的值为2148,则F(n)的值为716,各数位上数字之和是偶数,
当a=3,b=0时,n的值为3069,则F(n)的值为1023,各数位上数字之和是偶数,
∴n的值是2148或3069.
二.一元二次方程的应用(共1小题)
3.(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.
(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?
(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.
【答案】(1)每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;
(2)a=8.
【解答】解:(1)设每份“堂食”小面的价格为x元,每份“生食”小面的价格为y元,
根据题意得:,
解得:,
答:每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;
(2)由题意得:4500×7+2500(1+a%)×5(1﹣a%)=(4500×7+2500×5)(1+a%),
设a%=m,则方程可化为:9×7+25(1+m)(1﹣m)=(9×7+25)(1+m),
375m2﹣30m=0,
m(25m﹣2)=0,
解得:m1=0(舍),m2=,
∴a=8.
三.分式方程的应用(共1小题)
4.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.
(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?
(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?
【答案】(1)甲施工队增加人员后每天修建灌溉水渠100米;
(2)乙施工队原来每天修建灌溉水渠90米.
【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x﹣20)米,
由题意可得:5(x﹣20)+2x=600,
解得x=100,
答:甲施工队增加人员后每天修建灌溉水渠100米;
(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,
由题意可得:,
解得m=90,
经检验,m=90是原分式方程的解,
答:乙施工队原来每天修建灌溉水渠90米.
四.反比例函数与一次函数的交点问题(共1小题)
5.(2021•重庆)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.
x
…
﹣2
﹣1
0
1
2
3
4
5
…
y
…
6
5
4
a
2
1
b
7
…
(1)写出函数关系式中m及表格中a,b的值:
m= ﹣2 ,a= 3 ,b= 4 ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: 当x=3时函数有最小值y=1 ;
(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式x+|﹣2x+6|+m>的解集.
【答案】(1)﹣2,3,4;
(2)图象见解答过程,当x=3时函数有最小值y=1(答案不唯一);
(3)x<0或x>4.
【解答】解:(1)当x=0时,|6|+m=4,
解得:m=﹣2,
即函数解析式为:y=x+|﹣2x+6|﹣2,
当x=1时,a=1+|﹣2+6|﹣2=3,
当x=4时,b=4+|﹣2×4+6|﹣2=4,
故答案为:﹣2,3,4;
(2)图象如右图,根据图象可知当x=3时函数有最小值y=1;
(3)根据当y=x+|﹣2x+6|﹣2的函数图象在函数y=的图象上方时,不等式x+|﹣2x+6|﹣2>成立,
∴x<0或x>4.
五.二次函数综合题(共3小题)
6.(2023•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).
(1)求该抛物线的表达式;
(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;
(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.
【答案】(1)y=x2+x﹣3;
(2)PD的最大值为:,此时点P(﹣2,﹣);
(3)点Q的坐标为:(,)或(,5)或(,﹣1).
【解答】解:(1)由题意得:,
解得:,
则抛物线的表达式为:y=x2+x﹣3;
(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),
由点A、C知,直线AC的表达式为:y=﹣x﹣3,
过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,
则tan∠PHC=tan∠ACO=,则sin∠PHC=,
则PD=PH•sin∠PHC=PH,
设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),
则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,
即PD的最大值为:,此时点P(﹣2,﹣);
(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,
则点F(0,2),设点Q(,m),
则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,
当QE=QF时,则()2+(m﹣2)2=+(m+)2,
解得:m=,
则点Q的坐标为(,);
当QF=EF时,则()2+(m﹣2)2=9+,
解得:m=5或﹣1,
则点Q的坐标为:(,5)或(,﹣1);
综上,点Q的坐标为:(,)或(,5)或(,﹣1).
7.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
(1)求抛物线的函数表达式;
(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;
(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.
【答案】(1)y=﹣;
(2)最大值为,此时P(1,);
(3)D(4,)或(4,﹣)或(4,).
【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
∴,
∴.
∴抛物线的函数表达式为y=﹣;
(2)∵A(4,0),B(0,3),
∴OA=4,OB=3,
由勾股定理得,AB=5,
∵PQ⊥OA,
∴PQ∥OB,
∴△AQM∽△AOB,
∴MQ:AQ:AM=3:4:5,
∴AM=,,
∴PM+,
∵B(0,3),A(4,0),
∴lAB:y=﹣,
∴设P(m,﹣),M(m,﹣),Q(m,0),
∴PM+2MQ=﹣=﹣,
∵﹣,
∴开口向下,0<m<4,
∴当m=1时,PM+的最大值为,此时P(1,);
(3)由y=﹣知,对称轴x=,
∴P'(2,),
∵直线l:x=4,
∴抛物线向右平移个单位,
∴平移后抛物线解析式为y'=﹣,
设D(4,t),C(c,﹣),
①AP'与DC为对角线时,
,
∴,
∴D(4,),
②P'D与AC为对角线时,
,
∴,
∴D(4,﹣),
③AD与P'C为对角线时,
,
∴,
∴D(4,),
综上:D(4,)或(4,﹣)或(4,).
8.(2021•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求△PAD面积的最大值.
(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,在y1上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
【答案】(1)y=x2﹣3x﹣4;(2)8;(3)G()或G()或G().
【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx﹣4得
,
∴,
∴y=x2﹣3x﹣4,
(2)当x=0时,y=﹣4,
∴点C(0,﹣4),
∵点D与点C关于直线l对称,且对称轴为直线x=,
∴D(3,﹣4),
∵A(﹣1,0),
∴直线AD的函数关系式为:y=﹣x﹣1,
设P(m,m2﹣3m﹣4),
作PH∥y轴交直线AD于H,
∴H(m,﹣m﹣1),
∴PH=﹣m﹣1﹣(m2﹣3m﹣4)
=﹣m2+2m+3,
∴S△APD=S△APH+S△DPH==2(﹣m2+2m+3)=﹣2m2+4m+6,
当m=﹣=1时,S△APD最大为8,
(3)∵直线AD与x轴正方向夹角为45°,
∴沿AD方向平移,实际可看成向右平移4个单位,再向下平移4个单位,
∵P(1,﹣6),
∴E(5,﹣10),
抛物线y=x2﹣3x﹣4平移后y1=x2﹣11x+20,
∴抛物线y1的对称轴为:直线x=,
当DE为平行四边形的边时:
若D平移到对称轴上F点,则G的横坐标为,
代入y1=x2﹣11x+20得y=﹣,
∴,
若E平移到对称轴上F点,则G的横坐标为,
代入y1=x2﹣11x+20得y=,
∴,
若DE为平行四边形的对角线时,
若E平移到对称轴上F点,则G平移到D点,
∴G的横坐标为,
代入y1=x2﹣11x+20得y=﹣,
∴
∴G()或G()或G(),
六.作图—基本作图(共1小题)
9.(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:
证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)
在△ADC和△CFA中,
∵AD⊥BC,
∴∠ADC=90°.
∵∠F=90°,
∴① ∠ADC=∠F .
∵EF∥BC,
∴② ∠1=∠2 .
又∵③ AC=AC ,
∴△ADC≌△CFA(AAS).
同理可得:④ △ADB≌△BEA(AAS) .
S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.
【答案】①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).
【解答】证明:
∵AD⊥BC,
∴∠ADC=90°.
∵∠F=90°,
∴∠ADC=∠F,
∵EF∥BC,
∴∠1=∠2,
∵AC=AC,
在△ADC与△CFA中
,
∴△ADC≌△CFA(AAS).
同理可得:④△ADB≌△BEA(AAS),
∴S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.
故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).
七.几何变换综合题(共3小题)
10.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.
(1)如图1,求证:∠CBE=∠CAF;
(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;
(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.
【答案】(1)证明过程见解析;
(2)证明过程见解析;
(3)+2.
【解答】(1)证明:∵△ABC为等边三角形,
∴∠ACB=60°,AC=BC,
∵将CE绕点C顺时针旋转60°得到线段CF,
∴CE=CF,∠ECF=60°,
∵△ABC是等边三角形,
∴∠BCA=∠ECF,
∴∠BCE=∠ACF,
∴△BCE≌△ACF(SAS),
∴∠CBE=∠CAF;
(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,
∵△ABC是等边三角形,
∴AB=AC=BC,
∵AD⊥BC,
∴BD=CD,
∴AD垂直平分BC,
∴EB=EC,
又∵△BCE≌△ACF,
∴AF=BE,CF=CE,
∴AF=CF,
∴F在AC的垂直平分线上,
∵AB=BC,
∴B在AC的垂直平分线上,
∴BF垂直平分AC,
∴AC⊥BF,AG=CG=AC,
∴∠AGF=90°,
又∵DG=AC=CG,∠ACD=60°,
∴△DCG是等边三角形,
∴∠CGD=∠CDG=60°,
∴∠AGH=∠DGC=60°,
∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,
又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,
∴∠HKF=∠ADK=30°,
∴∠FKG=∠KGF=30°,
∴FG=FK,
在Rt△CED与Rt△CGF中,
,
∴Rt△CED≌Rt△CFG,
∴GF=ED,
∴ED=FK,
∴四边形EDFK是平行四边形,
∴EH=HF;
解法二:连接CH,证明∠CHE=90°,可得结论.
(3)解:依题意,如图所示,延长AP,DQ交于点R,
由(2)可知△DCG是等边三角形,
∴∠EDG=30°,
∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,
∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,
∴∠PAE=∠QDE=60°,
∴△ADR是等边三角形,
∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,
由(2)可得Rt△CED≌Rt△CFG,
∴DE=GF,
∴DE=DQ,
∴GF=DQ,
∵∠GBC=∠QDC=30°,
∴GF∥DQ,
∴四边形GDQF是平行四边形,
∴QF=DG=AC=2,
由(2)可知G是AC的中点,则GA=GD,
∴∠GAD=∠GDA=30°,
∴∠AGD=120°,
∵折叠,
∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,
∴∠PGQ=360°﹣2∠AGD=120°,
又PG=GE=GQ,
∴PQ=PG=GQ,
∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,
∴GQ=GC=DC=1,
∴PQ=,
∴PQ+QF=+2.
解法二:由两次翻折,推得∠PGQ=360°﹣240°=120°,则PQ=PG=EG,
由QF=DG=2,推出PQ1+QF的最小值,只需要求出EG的最小值,
当EG⊥AD时,EG的值最小,最小值为1,
∴PQ+QF的最小值为+2.
11.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.
(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;
(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;
(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.
【答案】(1)2;(2)证明见解答;(3)﹣.
【解答】(1)解:如图1,连接CP,
由旋转知,CF=CG,∠FCG=90°,
∴△FCG为等腰直角三角形,
∵点P是FG的中点,
∴CP⊥FG,
∵点D是BC的中点,
∴DP=BC,
在Rt△ABC中,AB=AC=2,
∴BC=AB=4,
∴DP=2;
(2)证明:如图2,
过点E作EH⊥AE交AD的延长线于H,
∴∠AEH=90°,
由旋转知,EG=EF,∠FEG=90°,
∴∠FEG=∠AEH,
∴∠AEG=∠HEF,
∵AB=AC,点D是BC的中点,
∴∠BAD=∠CAD=∠BAC=45°,
∴∠H=90°﹣∠CAD=45°=∠CAD,
∴AE=HE,
∴△EGA≌△EFH(SAS),
∴AG=FH,∠EAG=∠H=45°,
∴∠EAG=∠BAD=45°,
∵AB⊥AC,HE⊥AC,
∴AB∥HE,
∴∠AMF=∠HEF,
∵△EGA≌△EFH,
∴∠AEG=∠HEF,
∵∠AGN=∠AEG,
∴∠AGN=∠HEF,
∴∠AGN=∠AMF,
∵GN=MF,
∴△AGN≌△AMF(AAS),
∴AG=AM,
∵AG=FH,
∴AM=FH,
∴AF+AM=AF+FH=AH=AE;
(3)解:∵点E是AC的中点,
∴AE=AC=,
根据勾股定理得,BE==,
由折叠知,BE=B'E=,
∴点B'是以点E为圆心,为半径的圆上,
由旋转知,EF=EG,
∴点G在点A右侧过点A与AD垂直且等长的线段上,
∴B'G的最小值为B'E﹣EG,
要B'G最小,则EG最大,即EF最大,
∵点F在AD上,
∴点F在点A或点D时,EF最大,最大值为,
∴线段B′G的长度的最小值﹣.
12.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.
(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.
①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;
②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;
(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP最小时,直接写出△DPN的面积.
【答案】(1)①;
②证明见解答过程;
(2).
【解答】解:(1)①过D作DH⊥GC于H,如图:
∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,
∴BG=BF,∠FBG=60°,
∴△BGF是等边三角形,
∴∠BFG=∠DFC=60°,BF=GF,
∵等边△ABC,AB=6,BD⊥AC,
∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB=3,
∴∠BCG=∠ACB﹣∠DCF=30°,
∴∠BCG=∠DBC,
∴BF=CF,
∴GF=CF,
Rt△FDC中,CF===2,
∴GF=2,
Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,
∴FH=CF﹣CH=,
∴GH=GF+FH=,
Rt△GHD中,DG==;
②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:
∵EF绕点E逆时针旋转60°得到线段EG,
∴△EGF是等边三角形,
∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠ABC+∠EFH=180°,
∴B、E、F、H共圆,
∴∠FBH=∠FEH,
而△ABC是等边三角形,BD⊥AC,
∴∠DBC=∠ABD=30°,即∠FBH=30°,
∴∠FEH=30°,
∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,
∴EF=HF=GF①,
∵EP⊥AB,∠ABD=30°,
∴∠EPB=60°,∠EPF=120°,
∴∠EPF+∠EGF=180°,
∴E、P、F、G共圆,
∴∠GPF=∠GEF=60°,
∵MH⊥BC,∠DBC=30°,
∴∠BMH=60°,
∴∠BMH=∠GPF②,
而∠GFP=∠HFM③,
由①②③得△GFP≌△HFM(AAS),
∴PF=FM,
∵EP⊥AB,BP中点N,∠ABD=30°,
∴EP=BP=BN=NP,
∴PF+NP=FM+BN,
∴NF=BM,
Rt△MHB中,MH=BM,
∴NF=MH,
∴NF+BN=MH+EP,即BF=MH+EP,
Rt△BEP中,EP=BE•tan30°=BE,
Rt△MHB中,MH=BH•tan30°=BH,
∴BF=BE+BH,
∴BE+BH=BF;
补充方法:
构造等腰△BFM,使∠BFM=∠EFH=120°,且BF=MF,如图:
∴∠FBM=∠FBH=30°,
∴BM与BH共线,
可证△BEF≌△MHF(SAS),
∴BE=HM,
∴BE+BH=HM+BH=BM,
而∠BFM=120°,且BF=MF,可得BM=BF,
∴BE+BH=BF;
(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP交BD于K,如图:
Rt△PMH中,HP=MP,
∴NP+MP最小即是NP+HP最小,此时N、P、H共线,
∵将线段EF绕点E顺时针旋转60°得到线段EP,
∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,
∴∠BKM=60°,
∵∠ABD=30°,
∴∠BMK=90°,
∵∠PML=30°,
∴∠BML=60°,
∴∠BML=∠A,
∴ML∥AC,
∴∠HNA=180°﹣∠PHM=90°,
而BD⊥AC,
∴∠BDC=∠HNA=∠PHM=90°,
∴四边形GHND是矩形,
∴DN=GH,
∵等边△ABC中,AB=6,BD⊥AC,
∴CD=3,
又DN=2NC,
∴DN=GH=2,
∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,
∴BM=,BD=AB•sinA=6×sin60°=3,
Rt△BGM中,MG=BM=,BG=BM•cos30°=,
∴MH=MG+GH=,GD=BD﹣BG=,
Rt△MHP中,HP=MH•tan30°=,
∴PN=HN﹣HP=GD﹣HP=,
∴S△DPN=PN•DN=.
八.解直角三角形的应用-方向角问题(共1小题)
13.(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.
(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);
(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)
【答案】(1)1559米;
(2)快艇能在5分钟内将该游客送上救援船.
【解答】解:(1)如图,延长CB到D,则CD⊥AD于点D,
根据题意可知:∠NAC=∠CAB=30°,BC=900米,BC∥AN,
∴∠C=∠NAC=30°=∠BAD,
∴AB=BC=900米,
∵∠BAD=30°,
∴BD=450米,
∴AD=BD=450(米),
∴AC=2AD=900≈1559(米)
答:湖岸A与码头C的距离约为1559米;
(2)设快艇在x分钟内将该游客送上救援船,
∵救援船的平均速度为150米/分,快艇的平均速度为400米/分,
∴150x+(400x﹣900)=1559,
∴x≈4.5,
答:快艇能在5分钟内将该游客送上救援船.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。
这是一份江西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共17页。试卷主要包含了的图象于点C,课本再现等内容,欢迎下载使用。