山东日照三年(2021-2023)中考数学真题分题型分类汇编-02填空题
展开山东日照三年(2021-2023)中考数学真题分题型分类汇编-02填空题
一、填空题
1.(2021·山东日照·统考中考真题)若式子有意义,则x的取值范围是___.
2.(2021·山东日照·统考中考真题)关于的方程(、为实数且),恰好是该方程的根,则的值为_______.
3.(2021·山东日照·统考中考真题)如图,在矩形中,,,点从点出发,以的速度沿边向点运动,到达点停止,同时,点从点出发,以的速度沿边向点运动,到达点停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当为_____时,与全等.
4.(2021·山东日照·统考中考真题)如图,在平面直角坐标系中,正方形的边、分别在轴和轴上,,点是边上靠近点的三等分点,将沿直线折叠后得到,若反比例函数的图象经过点,则的值为_______.
5.(2022·山东日照·统考中考真题)若二次根式在实数范围内有意义,那么的取值范围是_______.
6.(2022·山东日照·统考中考真题)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.
7.(2022·山东日照·统考中考真题)关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且,则m=__________.
8.(2022·山东日照·统考中考真题)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.
9.(2023·山东日照·统考中考真题)分解因式:_________.
10.(2023·山东日照·统考中考真题)若点在第四象限,则m的取值范围是__________.
11.(2023·山东日照·统考中考真题)已知反比例函数(且)的图象与一次函数的图象共有两个交点,且两交点横坐标的乘积,请写出一个满足条件的k值__________.
12.(2023·山东日照·统考中考真题)如图,矩形中,,点P在对角线上,过点P作,交边于点M,N,过点M作交于点E,连接.下列结论:①;②四边形的面积不变;③当时,;④的最小值是20.其中所有正确结论的序号是__________.
参考答案:
1.且
【详解】∵式子在实数范围内有意义,
∴x+1≥0,且x≠0,
解得:x≥-1且x≠0,
故答案为x≥-1且x≠0.
2.-2
【分析】根据方程的解的概念,将代入原方程,然后利用等式的性质求解.
【详解】解:由题意可得,
把代入原方程可得:,
等式左右两边同时除以,可得:,
即,
故答案为:.
【点睛】本题考查方程的解的概念及等式的性质,理解方程的解的定义,掌握等式的基本性质是解题关键.
3.2或
【分析】可分两种情况:①得到,,②得到,,然后分别计算出的值,进而得到的值.
【详解】解:①当,时,,
,
,
,
,解得:,
,
,
解得:;
②当,时,,
,
,
,解得:,
,
,
解得:,
综上所述,当或时,与全等,
故答案为:2或.
【点睛】主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.
4.48
【分析】过作于,交于,设,,,通过证得△△,得到,解方程组求得、的值,即可得到的坐标,代入即可求得的值.
【详解】解:过作于,交于,
,
,
,
,
,
△△,
,
设,
,,
正方形的边、分别在轴和轴上,,点是边上靠近点的三等分点,
,,
,
解得,,
,
反比例函数的图象经过点,
,
故答案为48.
【点睛】本题考查了正方形的性质,反比例函数图象上点的坐标特征,三角形相似的判定和性质,求得的坐标是解题的关键.
5.
【分析】根据二次根式有意义的条件:被开方数大于或等于0,列不等式求解.
【详解】解:根据题意,得
,
解得:,
故答案是:.
【点睛】本题考查了二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.
6.
【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.
【详解】解:连接AC,
∵∠ABC=90°,且∠ABC是圆周角,
∴AC是圆形镜面的直径,
由勾股定理得:,
所以圆形镜面的半径为,
故答案为:.
【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.
7./-0.125
【分析】根据根与系数的关系得到x1+x2=-2m,x1x2=,再由x12+x22=变形得到(x1+x2)2-2x1x2=,即可得到4m2-m=,然后解此方程即可.
【详解】解:根据题意得x1+x2=-2m,x1x2=,
∵x12+x22=,
∴(x1+x2)2-2x1x2=,
∴4m2-m=,
∴m1=-,m2=,
∵Δ=16m2-8m>0,
∴m>或m<0时,
∴m=不合题意,
故答案为:.
【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.
8.2
【分析】点F运动所形成的图象是一条直线,当OF⊥F1F2时,垂线段OF最短,当点F1在x轴上时,由勾股定理得:,进而得,求得点F1的坐标为,当点F2在y轴上时,求得点F2的坐标为(0,-4),最后根据待定系数法,求得直线F1F2的解析式为y=x-4,再由线段中垂线性质得出,在Rt△OF1F2中,设点O到F1F2的距离为h,则根据面积法得,即,解得h=2,根据垂线段最短,即可得到线段OF的最小值为2.
【详解】解:∵将线段PA绕点P顺时针旋转60°得到线段PF,
∴∠APF=60°,PF=PA,
∴△APF是等边三角形,
∴AP=AF,
如图,当点F1在x轴上时,△P1AF1为等边三角形,
则P1A=P1F1=AF1,∠AP1F1=60°,
∵AO⊥P1F1,
∴P1O=F1O,∠AOP1=90°,
∴∠P1AO=30°,且AO=4,
由勾股定理得:,
∴,
∴点F1的坐标为,
如图,当点F2在y轴上时,
∵△P2AF2为等边三角形,AO⊥P2O,
∴AO=F2O=4,
∴点F2的坐标为(0,-4),
∵,
∴∠OF1F2=60°,
∴点F运动所形成的图象是一条直线,
∴当OF⊥F1F2时,线段OF最短,
设直线F1F2的解析式为y=kx+b,
则,
解得,
∴直线F1F2的解析式为y=x-4,
∵AO=F2O=4,AO⊥P1F1,
∴,
在Rt△OF1F2中,OF⊥F1F2,
设点O到F1F2的距离为h,则,
∴,
解得h=2,
即线段OF的最小值为2,
故答案为2.
【点睛】本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.
9.
【分析】根据提取公因式法和平方差公式,即可分解因式.
【详解】,
故答案是:.
【点睛】本题主要考查提取公因式法和平方差公式,掌握平方差公式,是解题的关键.
10./
【分析】根据第四象限的点横坐标为正,纵坐标为负进行求解即可。
【详解】解:∵点在第四象限,
∴,
解得,
故答案为:。
【点睛】本题主要考查了根据点所在的象限求参数,解一元一次不等式组,熟知第四象限内点的符号特点是解题的关键。
11.(满足都可以)
【分析】先判断出一次函数的图象必定经过第二、四象限,再根据判断出反比例函数图象和一次函数图象的两个交点在同一象限,从而可以得到反比例函数的图象经过第二、四象限,即,最终选取一个满足条件的值即可.
【详解】解:,
一次函数的图象必定经过第二、四象限,
,
反比例函数图象和一次函数图象的两个交点在同一象限,
反比例函数(且)的函数图象经过第一、三象限,
,
∴,
∵,
∴,
∴满足条件的k值可以为1.5,
故答案为:1.5(满足都可以).
【点睛】本题考查一次函数和反比例函数的图形性质,解题的关键是根据判断出反比例函数图象和一次函数图象的两个交点在同一象限.
12.②③④
【分析】根据等腰三角形的三线合一可知,可以判断①;利用相似和勾股定理可以得出,,,利用判断②;根据相似可以得到,判断③;利用将军饮马问题求出最小值判断④.
【详解】解:∵,,
∴,
在点P移动过程中,不一定,
相矛盾,
故①不正确;
延长交于点P,
则为矩形,
∴
∵,,
∴
∴,
∴,
∴,
即,
解得:,
∴
故②正确;
∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
故③正确,
,
即当的最小值,作B、D关于的对称点,
把图中的向上平移到图2位置,使得,连接,即为的最小值,则,,
这时,
即的最小值是20,
故④正确;
故答案为:②③④
【点睛】本题考查矩形的性质,相似三角形的判定和性质,轴对称,掌握相似三角形的判定和性质是解题的关键.
江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-02填空题②: 这是一份江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-02填空题②,共11页。试卷主要包含了填空题等内容,欢迎下载使用。
江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-02填空题①: 这是一份江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-02填空题①,共6页。试卷主要包含了填空题等内容,欢迎下载使用。
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-02填空题: 这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-02填空题,共14页。试卷主要包含了填空题等内容,欢迎下载使用。