山东威海三年(2021-2023)中考数学真题分题型分类汇编-01选择题②
展开山东威海三年(2021-2023)中考数学真题分题型分类汇编-01选择题②
一、单选题
1.(2022·山东威海·统考中考真题)试卷上一个正确的式子()÷★=被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )
A. B. C. D.
2.(2022·山东威海·统考中考真题)如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是( )
A.b>0
B.a+b>0
C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根
D.点(x1,y1),(x2,y2)在二次函数的图像上,当x1>x2>2时,y2<y1<0
3.(2022·山东威海·统考中考真题)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )
A. B.
C. D.
4.(2022·山东威海·统考中考真题)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为( )
A.()3 B.()7 C.()6 D.()6
5.(2021·山东威海·统考中考真题)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是( )
A.
B.
C.
D.
6.(2021·山东威海·统考中考真题)如图,在平行四边形中,,.连接AC,过点B作,交DC的延长线于点E,连接AE,交BC于点F.若,则四边形ABEC的面积为( )
A. B. C.6 D.
7.(2021·山东威海·统考中考真题)如图,在和中,,,.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分,则下列结论错误的是( )
A. B. C. D.
8.(2021·山东威海·统考中考真题)如图,在菱形ABCD中,,,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )
A. B.
C. D.
9.(2021·山东威海·统考中考真题)一次函数与反比例函数的图象交于点,点.当时,x的取值范围是( )
A. B.或
C. D.或
10.(2021·山东威海·统考中考真题)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
11.(2023·山东·统考中考真题)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是( )
A.A点 B.B点 C.C点 D.D点
12.(2023·山东·统考中考真题)常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是..若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是.太阳到地球的平均距离大约为千米.若以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为( )
A.24.24千米 B.72.72千米 C.242.4千米 D.727.2千米
13.(2023·山东·统考中考真题)如图,四边形是一张矩形纸片.将其按如图所示的方式折叠:使边落在边上,点落在点处,折痕为;使边落在边上,点落在点处,折痕为.若矩形与原矩形相似,,则的长为( )
A. B. C. D.
14.(2023·山东·统考中考真题)在中,,下列说法错误的是( )
A. B.
C.内切圆的半径 D.当时,是直角三角形
参考答案:
1.A
【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.
【详解】解:★=
★=
★=
=,
故选A.
【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.
2.D
【分析】根据二次函数的图像和性质作出判断即可.
【详解】解:根据图像知,当时,,
故B选项结论正确,不符合题意,
,
,
故A选项结论正确,不符合题意;
由题可知二次函数对称轴为,
,
,
故B选项结论正确,不符合题意;
根据图像可知是关于的方程的一个根,
故选项结论正确,不符合题意,
若点,在二次函数的图像上,
当时,,
故D选项结论不正确,符合题意,
故选:D.
【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.
3.C
【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.
【详解】A、如图,连接AP、AQ、BP、BQ,
AP=BP,AQ=BQ,
点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,
直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,
本选项不符合题意;
B、如图,连接AP、AQ、BP、BQ,
AP= AQ,BP =BQ,
点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,
直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,
本选项不符合题意;
C、C项无法判定直线PQ垂直直线l,本选项符合题意;
D、如图,连接AP、AQ、BP、BQ,
AP= AQ,BP =BQ,
点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,
直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,
本选项不符合题意;
故选:C.
【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.
4.C
【分析】根据题意得出A、O、G在同一直线上,B、O、H在同一直线上,确定与△AOB位似的三角形为△GOH,利用锐角三角函数找出相应规律得出OG=,再由相似三角形的性质求解即可.
【详解】解:∵∠AOB=∠BOC=∠COD=…=∠LOM=30°
∴∠AOG=180°,∠BOH=180°,
∴A、O、G在同一直线上,B、O、H在同一直线上,
∴与△AOB位似的三角形为△GOH,
设OA=x,
则OB=,
∴OC=,
∴OD=,
…
∴OG=,
∴,
∴,
∵,
∴,
故选:C.
【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.
5.A
【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.
【详解】解不等式①得:x>−3,
解不等式②得:x≤-1,
∴不等式组的解集为-3<x≤-1,
将不等式组的解集表示在数轴上如下:
故选A.
【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
6.B
【分析】先证明四边形ABEC为矩形,再求出AC,即可求出四边形ABEC的面积.
【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,
∵,
∴四边形ABEC为平行四边形,
∵,
∴,
∵∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴AF=BF,
∴2AF=2BF,
即BC=AE,
∴平行四边形ABEC是矩形,
∴∠BAC=90°,
∴,
∴矩形ABEC的面积为.
故选:B
【点睛】本题考查了平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟知相关定理,证明四边形ABEC为矩形是解题关键.
7.C
【分析】根据即可证明,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断
【详解】
,故选项A正确;
平分
,故选项B正确;
即
,故选项C错误;
,故选项D正确;
故答案选:C.
【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.
8.A
【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.
【详解】解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,ACD都是等边三角形,
∴∠CAB=∠ACB=∠ACD=60°.
如图1,当0≤x≤1时,AQ=2x,AP=x,
作PE⊥AB于E,
∴,
∴,
故D选项不正确;
如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,
作PF⊥BC与F,作QH⊥AB于H,
∴,
,
∴,
故B选项不正确;
当2<x≤3时,CP=x-2,CQ=2x-4,
∴PQ=x-2,
作AG⊥CD于G,
∴,
∴,
故C不正确.
故选:A
【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.
9.D
【分析】先确定一次函数和反比例函数解析式,然后画出图象,再根据图象确定x的取值范围即可.
【详解】解:∵两函数图象交于点,点
∴ ,,解得:,k2=2
∴,
画出函数图象如下图:
由函数图象可得的解集为:0<x<2或x<-1.
故填D.
【点睛】本题主要考查了运用待定系数法求函数解析式以及根据函数图象确定不等式的解集,根据题意确定函数解析式成为解答本题的关键.
10.C
【分析】通过列举的方法将所有可能的情况一一列举,进而找出小球上的数字都是奇数的情况即可求出对应概率.
【详解】所有可能出现的情况列举如下:
;;;
;;
;
共10种情况,
符合条件的情况有:;;;共3种情况;
小球上的数字都是奇数的概率为,
故选:C.
【点睛】本题主要考查了简单概率的求解方法,通过列举法列举出等可能的情况是解决本题的关键.
11.D
【分析】根据题意画出立体图形,即可求解.
【详解】解:折叠之后如图所示,
则K与点D的距离最远,
故选D.
【点睛】本题考查了正方体的展开与折叠,学生需要有一定的空间想象能力.
12.D
【分析】设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据顶角相等的两等腰三角形相似,相似三角形的对应边成比例,可列出方程,求解即可.
【详解】解:设以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为x毫米,根据题意,得
解得:
∴等腰三角形底边长为毫米千米.
故选:D.
【点睛】本题考查一元一次方程的应用.根据相似三角形判定与性质列出方程是解题的关键,注意单位换算.
13.C
【分析】先根据折叠的性质与矩形性质,求得,设的长为x,则,再根据相似多边形性质得出,即,求解即可.
【详解】解:,由折叠可得:,,
∵矩形,
∴,
∴,
设的长为x,则,
∵矩形,
∴,
∵矩形与原矩形相似,
∴,即,
解得:(负值不符合题意,舍去)
∴,
故选:C.
【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.
14.C
【分析】根据三角形三边关系、三角形面积、内切圆半径的计算以及勾股定理逆定理逐一求解即可.
【详解】解:∵,
∴即,故A说法正确;
当时,,
若以为底,高,
∴,故B说法正确;
设内切圆的半径为r,
则,
∵,
∴,,
∵,
∴,
∴,故C说法错误;
当时,,
∴是直角三角形,故D说法正确;
故选:C.
【点睛】本题考查了三角形三边关系,三角形面积,三角形内切圆半径以及勾股定理的逆定理,掌握内切圆半径与圆的面积周长之间的关系是解题的关键.
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②: 这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共19页。试卷主要包含了单选题等内容,欢迎下载使用。
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题①: 这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题①,共9页。试卷主要包含了单选题等内容,欢迎下载使用。
山东威海三年(2021-2023)中考数学真题分题型分类汇编-03解答题: 这是一份山东威海三年(2021-2023)中考数学真题分题型分类汇编-03解答题,共37页。试卷主要包含了解答题等内容,欢迎下载使用。