搜索
    上传资料 赚现金
    英语朗读宝

    专题05 圆的证明与求值综合问题(解析版)

    专题05 圆的证明与求值综合问题(解析版)第1页
    专题05 圆的证明与求值综合问题(解析版)第2页
    专题05 圆的证明与求值综合问题(解析版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05 圆的证明与求值综合问题(解析版)

    展开

    这是一份专题05 圆的证明与求值综合问题(解析版),共26页。
    2023年中考数学必考的解答题难题微专题精炼(全国通用)
    专题05 圆的证明与求值综合问题
    1. 如图,是的外接圆,AB是直径,,连接AD,,AC与OD相交于点E.

    (1)求证:AD是的切线;
    (2)若,,求的半径.
    【答案】(1)见解析 (2)2
    【解析】【分析】(1)先证∠BOC +∠AOD=90°,再因为,得出∠ADO +∠AOD=90°,即可得∠OAD=90°,即可由切线的判定定理得出结论;
    (2)先证明∠AED=∠DAE,得出DE=AD=,再证∠OAC=∠OCA,得tan∠OAC= tan∠OCA=,设OC=OA=R,则OE=R,在Rt△OAD中,由勾股定理,得
    ,解之即可.
    【小问1详解】
    证明:∵,
    ∴∠COD=90°,
    ∵∠BOC+∠COD+∠AOD=180°,
    ∴∠BOC +∠AOD=90°,
    ∵,
    ∴∠ADO +∠AOD=90°,
    ∵∠ADO +∠AOD+∠OAD=180°,
    ∴∠OAD=90°,
    ∵OA是⊙O的半径,
    ∴AD是⊙O的切线;
    【小问2详解】
    解:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠B+∠BAC=90°,
    ∵∠BAC+∠CAD=∠OAD=90°,
    ∴∠B=∠CAD,
    ∵∠B+∠BOC+∠OCB=∠ADO+∠CAD+∠AED=180°,∠ADO=∠BOC,
    ∴∠AED=∠OCB,
    ∵OB=OC,
    ∴∠B=∠OCB,
    ∴∠AED=∠CAD,
    ∴DE=AD=,
    ∵OC=OA,
    ∴∠OAC=∠OCA,
    ∵OC⊥OD,
    ∴∠COE=90°,
    ∴tan∠OAC= tan∠OCA=,
    设OC=OA=R,
    则OE=R,
    在Rt△OAD中,∠OAD=90°,
    由勾股定理,得OD2=OA2+AD2,
    即,
    解得:R=2或R=0(不符合题意,舍去),
    ∴⊙O的半径为2.
    【点睛】本师考查切线的判定,解直角三角形,勾股定理,等腰三角形的判定,圆周角定理的推论,本题属圆的综合题目,熟练掌握相关性质与判定是解题的关键.
    2. 如图,在中,,以AC为直径作交BC于点D,过点D作,垂足为E,延长BA交于点F.

    (1)求证:DE是的切线
    (2)若,求的半径.
    【答案】(1)见解析 (2)13
    【解析】【分析】(1)连接OD,只要证明OD⊥DE即可;
    (2)连接CF,证OD是△ABC的中位线,得CF=2DE,再证DE是△FBC的中位线,得CF=2DE,设AE=2x,DE=3k,则CF=6k,BE=EF=AE+AF=2k+10,AC=BA=EF+AE=4k+10,然后在Rt△ACF中,由勾股定理,得 (4k+10)2=102+(6k)2,
    解得:k=4,从而求得AC=4k+10=4×4+10=26,即可求得的半径OA长,即可求解.
    【详解】(1)证明:连接OD;

    ∵OD=OC,
    ∴∠C=∠ODC,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠ODC,
    ∴ODAB,
    ∴∠ODE=∠DEB;
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴∠ODE=90°,
    即DE⊥OD,
    ∴DE是⊙O的切线.
    (2)解:连接CF,

    由(1)知OD⊥DE,
    ∵DE⊥AB,
    ∴ODAB,
    ∵OA=OC,
    ∴BD=CD,即OD是△ABC的中位线,
    ∵AC是的直径,
    ∴∠CFA=90°,
    ∵DE⊥AB,
    ∴∠BED=90°,
    ∴∠CFA=∠BED=90°,
    ∴DECF,
    ∴BE=EF,即DE是△FBC的中位线,
    ∴CF=2DE,
    ∵,
    ∴设AE=2x,DE=3k,CF=6k,
    ∵AF=10,
    ∴BE=EF=AE+AF=2k+10,
    ∴AC=BA=EF+AE=4k+10,
    在Rt△ACF中,由勾股定理,得
    AC2=AF2+CF2,即(4k+10)2=102+(6k)2,
    解得:k=4,
    ∴AC=4k+10=4×4+10=26,
    ∴OA=13,
    即的半径为13.
    【点睛】本题考查圆周角定理,切线的判定与性质,勾股定理,三角形中位线的判定与性质,证OD是△ABC的中位线, DE是△FBC的中位线是解题的关键.
    3. 如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.

    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值;
    (3)若GH=,HB=2,求⊙O的直径.
    【答案】(1)见解析 (2) (3)⊙O的直径为
    【解析】【分析】(1)连接OF,先证明OFAC,则∠OFD=∠C=,根据切线的判定定理可得出结论.
    (2)先证∠DFB=∠OAF,∠ADG=∠FDG,根据三角形的一个外角等于和它不相邻的两个内角之和得出∠FGH=∠FHG=,从而可求出sin∠FHG的值.
    (3)先在△GFH中求出FH的值为4,根据等积法可得,再证△DFB∽△DAF,根据对应边成比例可得,又由角平分线的性质可得,从而可求出AG、AF.在Rt△AFB中根据勾股定理可求出AB的长,即⊙O的直径.
    【小问1详解】
    证明:连接OF.

    ∵OA=OF,
    ∴∠OAF=∠OFA,

    ∴∠CAF=∠FAB,
    ∴∠CAF=∠AFO,
    ∴OFAC,
    ∵AC⊥CD,
    ∴OF⊥CD,
    ∵OF是半径,
    ∴CD是⊙O的切线.
    【小问2详解】
    ∵AB是直径,
    ∴∠AFB=90°,
    ∵OF⊥CD,
    ∴∠OFD=∠AFB=90°,
    ∴∠AFO=∠DFB,
    ∵∠OAF=∠OFA,
    ∴∠DFB=∠OAF,
    ∵GD平分∠ADF,
    ∴∠ADG=∠FDG,
    ∵∠FGH=∠OAF+∠ADG,∠FHG=∠DFB+∠FDG,
    ∴∠FGH=∠FHG=45°,
    ∴sin∠FHG=
    【小问3详解】
    解:过点H作HM⊥DF于点M,HN⊥AD于点N.

    ∵HD平分∠ADF,
    ∴HM=HN,
    S△DHF ∶S△DHB= FH∶HB=DF ∶DB
    ∵△FGH是等腰直角三角形,GH=
    ∴FH=FG=4,

    设DB=k,DF=2k,
    ∵∠FDB=∠ADF,∠DFB=∠DAF,
    ∴△DFB∽△DAF,
    ∴DF2=DB•DA,
    ∴AD=4k,
    ∵GD平分∠ADF

    ∴AG=8,
    ∵∠AFB=90°,AF=12,FB=6,

    ∴⊙O的直径为
    【点睛】本题是一道综合性题目,考查了圆相关性质、切线的判定、相似三角形的判定和性质、角平分线性、勾股定理等知识,熟练掌握以上知识是解题的关键.
    4. 如图,△ABC内接于⊙O,交⊙O于点D,交BC于点E,交⊙O于点F,连接AF,CF.

    (1)求证:AC=AF;
    (2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).
    【答案】(1)见解析 (2)
    【解析】【分析】(1)先证明四边形ABED是平行四边形,得∠B=∠D,再证明即可得到结论;
    (2)连接OA,OC,根据等腰三角形的性质求出,由圆周角定理可得最后由弧长公式可求出结论.
    【详解】(1)∵,,
    ∴四边形ABED是平行四边形,
    ∴∠B=∠D.
    又∠AFC=∠B,∠ACF=∠D,
    ∴,
    ∴AC=AF.
    (2)连接AO,CO.

    由(1)得∠AFC=∠ACF,
    又∵∠CAF=30°,
    ∴,
    ∴.
    ∴的长.
    【点睛】本题主要考查了平行四边形的判定与性质,圆周角定理、等腰三角形的性质、弧长公式等知识,熟练掌握相关知识是解答本题的关键.
    5. 已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.

    (1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
    (2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE,求证:CE⊥AB.
    【答案】(1) (2)见解析
    【解析】【分析】(1)根据直角三角形的性质(在直角三角形中,30角所对的直角边等于斜边的一半)及勾股定理可求出OD,进而求出AD的长;
    (2)根据切线的性质可得OCCD,根据同一个圆的半径相等及等腰三角形的性质可得∠OCA=∠OAC,由各个角之间的关系以及等量代换可得答案.
    【详解】(1)∵OA=1=OC,COAB,∠D=30
    ∴CD=2⋅ OC=2


    (2)证明:∵DC与⊙O相切
    ∴OCCD
    即∠ACD+∠OCA=90
    ∵OC= OA
    ∴∠OCA=∠OAC
    ∵∠ACD=∠ACE
    ∴∠OAC+∠ACE=90
    ∴∠AEC=90
    ∴CEAB
    【点睛】本题考查切线的性质,直角三角形的性质,勾股定理以及等腰三角形的性质,掌握相关性质定理是解题的关键.
    6. 如图,是的直径,是的一条弦,连接

    (1)求证:
    (2)连接,过点作交的延长线于点,延长交于点,若为的中点,求证:直线为的切线.
    【答案】(1)答案见解析
    (2)答案见解析
    【解析】【分析】(1)设交于点,连接,证明 ,故可得 ,于是 ,即可得到;
    (2)连接,解出,根据为直径得到,进而得到,即可证明,故可证明直线为的切线.
    【详解】(1)证明:设交于点,连接,

    由题可知,
    ,,







    (2)证明:

    连接,


    同理可得:,,
    ∵点H是CD的中点,点F是AC的中点,




    为的直径,






    直线为的切线.
    【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.
    7. 如图,四边形内接于,为的直径,.

    (1)试判断的形状,并给出证明;
    (2)若,,求的长度.
    【答案】(1)△ABC是等腰直角三角形;证明见解析; (2);
    【解析】【分析】(1)根据圆周角定理可得∠ABC=90°,由∠ADB=∠CDB根据等弧对等角可得∠ACB=∠CAB,即可证明;
    (2)Rt△ABC中由勾股定理可得AC,Rt△ADC中由勾股定理求得CD即可;
    【详解】(1)证明:∵AC是圆的直径,则∠ABC=∠ADC=90°,
    ∵∠ADB=∠CDB,∠ADB=∠ACB,∠CDB=∠CAB,
    ∴∠ACB=∠CAB,
    ∴△ABC是等腰直角三角形;
    (2)解:∵△ABC是等腰直角三角形,
    ∴BC=AB=,
    ∴AC=,
    Rt△ADC中,∠ADC=90°,AD=1,则CD=,
    ∴CD=.
    【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.
    8. 如图,在中,,D是边上一点,以为直径的与相切于点E,连接并延长交的延长线于点F.

    (1)求证:;
    (2)若,求直径.
    【答案】(1)证明过程见解析 (2)5
    【解析】【分析】(1)连接OE,由AC是圆的切线得到∠AEO=90°=∠ACB,进而得到OE∥BC,得到∠F=∠DEO;再由半径相等得到∠ODE=∠DEO,进而得到∠F=∠ODE即可证明BD=BF;
    (2)连接OE,由求出EC=2,证明∠CEB=∠F进而由求出BC=4,最后根据BD=BF=BC+CF=4+1=5.
    【小问1详解】
    证明:连接OE,如下图所示:

    ∵AC为圆O的切线,
    ∴∠AEO=90°,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴OE∥BC,
    ∴∠F=∠DEO,
    又∵OD=OE,
    ∴∠ODE=∠DEO,
    ∴∠F=∠ODE,
    ∴BD=BF.
    【小问2详解】
    解:连接BE,如下图所示:

    由(1)中证明过程可知:∠EDB=∠F,
    ∴,代入数据:,
    ∴EC=2,
    又BD是圆O的直径,
    ∴∠BED=∠BEF=90°,
    ∴∠CEF+∠F=90°=∠CEF+∠CEB,
    ∴∠F=∠CEB,
    ∴,代入数据:,
    ∴BC=4,
    由(1)可知:BD=BF=BC+CF=4+1=5,
    ∴圆O的直径为5.
    【点睛】本题考察了圆周角定理、圆中切线的性质、三角函数求线段长度等,熟练掌握圆的切线的性质及圆周角定理是解题的关键.
    9. 如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.

    (1)求证:AB=CB;
    (2)若AB=18,sinA=,求EF的长.
    【答案】(1)见解析 (2)EF.
    【解析】【分析】(1)连接OD,则OD⊥DE,利用BC⊥DE,可得OD∥BC,通过证明得出∠A=∠C,结论得证;
    (2)连接BD,在Rt△ABD中,利用sinA=求得线段BD的长;在Rt△BDF中,利用sin∠A=sin∠FDB,解直角三角形可得结论;
    【详解】(1)证明:连接OD,如图1,

    ∵DE是⊙O的切线,
    ∴OD⊥DE.
    ∵BC⊥DE,
    ∴OD∥BC.
    ∴∠ODA=∠C.
    ∵OA=OD,
    ∴∠ODA=∠A.
    ∴∠A=∠C.
    ∴AB=BC;
    (2)解:连接BD,则∠ADB=90°,如图2,

    在Rt△ABD中,
    ∵sinA==,AB=18,
    ∴BD=6.
    ∵OB=OD,
    ∴∠ODB=∠OBD.
    ∵∠OBD+∠A=∠FDB+∠ODB=90°,
    ∴∠A=∠FDB.
    ∴sin∠A=sin∠FDB.
    在Rt△BDF中,
    ∵sin∠BDF==,
    ∴BF=2.
    由(1)知:OD∥BF,
    ∴△EBF∽△EOD.
    ∴=.即:=.
    解得:BE=.
    ∴EF=.
    【点睛】本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.
    10. 为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.
    【答案】(1)见解析 (2)50 cm
    【解析】【分析】(1)根据切线的性质可得,,根据,可得,过点作,根据平行线的性质可得,,进而即可得证;
    (2)过点作的平行线,交于点,交于点,由(1)得到,在,中,求得,进而求得,根据即可求解.
    【详解】(1)证明:⊙O与水平地面相切于点C,



    AB与⊙O相切于点B,


    过点作,





    即∠BOC+∠BAD=90°.
    (2)如图,过点作的平行线,交于点,交于点,

    ,则四边形是矩形,
    , ,

    在中,,,
    (cm),
    在中,,cm,
    (cm),
    (cm),
    (cm),
    cm,
    (cm).
    【点睛】本题考查了切线的性质,平行线的性质,解直角三角形的应用,掌握以上知识是解题的关键.
    11. 如图,四边形ABCD内接于,对角线AC,BD相交于点E,点F在边AD上,连接EF.

    (1)求证:;
    (2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
    (3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
    ②当,时,试用含m,n,p的式子表示.
    【答案】(1)见解析 (2)0,1,0
    (3)①等腰三角形,理由见解析,②
    【解析】【分析】(1)根据同弧所对的圆周角相等,对顶角相等,即可得证;
    (2)由(1)的结论,根据相似三角形的性质可得,即可得出0,根据已知条件可得,,即可得出根据相似三角形的性质可得,根据恒等式变形,进而即可求解.
    (3)①记的面积为,则,,根据已知条件可得,进而可得,得出,结合同弧所对的圆周角相等即可证明是等腰三角形;
    ②证明,,根据相似三角形的性质,得出,则,,计算即可求解.
    【详解】(1)证明:,

    即,
    又,

    (2),



















    故答案为:0,1,0
    (3)①记的面积为,
    则,



    即,

    由①②可得,
    即,


    即,




    都为等腰三角形;
    ②,








    又,

    ,,

    则,


    【点睛】本题考查了圆周角定理,相似三角形的性质与判定,对于相似恒等式的推导是解题的关键.
    12. 如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.

    (1)试判断PC与⊙O的位置关系,并说明理由;
    (2)若PC=4,tanA=,求△OCD的面积.
    【答案】(1)PC与⊙O相切,理由见解析 (2)
    【解析】【分析】(1)先证明∠ACB=90°,然后推出∠PCB=∠OCA,即可证明∠PCO=90°即可;
    (2)先证明,再证明△PBC∽△PCA,从而求出,AB=3,,,最后证明△PBC∽△POD,求出,则CD=6,由此求解即可.
    【详解】(1)解:PC与⊙O相切,理由如下:
    ∵AB是圆O的直径,
    ∴∠ACB=90°,
    ∴∠OCB+∠OCA=90°,
    ∵OA=OC,
    ∴∠OCA=∠OAC,
    ∵∠PCB=∠OAC,
    ∴∠PCB=∠OCA,
    ∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,
    ∴PC与⊙O相切;
    (2)解:∵∠ACB=90°,,
    ∴,
    ∵∠PCB=∠OAC,∠P=∠P,
    ∴△PBC∽△PCA,
    ∴,
    ∴,
    ∴AB=6,
    ∴,
    ∴,
    ∵,
    ∴△PBC∽△POD,
    ∴,即,
    ∴,
    ∴CD=6,
    ∴.
    【点睛】本题主要考查了切线的判定,等边对等角证明,解直角三角形,直径所对的圆周角是直角,相似三角形的性质与判定等等,熟练掌握圆切线的判定是解题的关键.






















    相关试卷

    专题05 圆的证明与求值综合问题(原卷版):

    这是一份专题05 圆的证明与求值综合问题(原卷版),共6页。

    中考数学专题复习 专题27 涉及圆的证明与计算问题:

    这是一份中考数学专题复习 专题27 涉及圆的证明与计算问题,文件包含中考数学专题复习专题27涉及圆的证明与计算问题教师版含解析docx、中考数学专题复习专题27涉及圆的证明与计算问题学生版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    初中数学中考复习 专题27 涉及圆的证明与计算问题(解析版):

    这是一份初中数学中考复习 专题27 涉及圆的证明与计算问题(解析版),共48页。试卷主要包含了与圆有关的概念,与圆有关的规律,点和圆,切线的规律,解题要领等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map