所属成套资源:2022-2023学年高一数学人教A版(2019)暑假作业
(10)概率(B卷)——2022-2023学年高一数学人教A版(2019)暑假作业
展开
这是一份(10)概率(B卷)——2022-2023学年高一数学人教A版(2019)暑假作业,共11页。试卷主要包含了下列说法错误的个数为,下列说法正确的是,下列问题中是古典概型的是等内容,欢迎下载使用。
(10)概率(B卷)——2022-2023学年高一数学人教A版(2019)暑假作业1.已知集合,从集合A中选取不相同的两个数,构成平面直角坐标系中的点的坐标,观察点的位置,则结果“点落在x轴上”包含的样本点共有( )A.7个 B.8个 C.9个 D.10个2.抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则( )A. B.C.表示向上的点数是1或2或3 D.AB表示向上的点数是1或2或33.随着互联网的普及,网上购物已逐渐成为消费时尚.为了解消费者对网上购物的满意情况,某研究机构随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:满意情况不满意比较满意满意非常满意人数200n21001000根据表中数据,估计在网上购物的消费者小马对网上购物“比较满意”或“满意”的概率为( )A. B. C. D.4.下列说法错误的个数为( )
①对立事件一定是互斥事件;
②若A,B为两个事件,则;
③若事件A,B,C两两互斥,则.
A.0 B.1 C.2 D.35.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )A. B. C. D.16.下列说法正确的是( )A.对立事件一定是互斥事件,互斥事件不一定是对立事件B.事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小C.若,则事件A与B是对立事件D.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大7.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A. B. C. D.8.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行.若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为( )A. B. C. D.9.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( )A. B. C. D.10.(多选)下列问题中是古典概型的是( )A.小杨种下一粒种子,求种子能长出果实的概率B.从甲地到乙地共n条线路,且这n条线路长短各不相同,求某人任选一条路线正好选中最短路线的概率C.在区间上任取一数,求这个数大于2的概率D.同时掷两颗质地均匀的骰子,求向上的点数之和是5的概率11.(多选)某篮球职业联赛中,运动员甲在最近几次参加的比赛中的投篮情况如下表(不包含罚球):投篮次数投中两分球的次数投中三分球的次数1005518记该运动员在一次投篮中,“投中两分球”为事件A,“投中三分球”为事件B,“没投中”为事件C,用频率估计概率,则下述结论中,正确的是( )A. B.C. D.12.(多选)从甲袋中摸出1个红球的概率是,从乙袋中摸出1个红球的概率是.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为B.2个球不都是红球的概率为C.至少有1个红球的概率为D.2个球中恰有1个红球的概率为13.(多选)4支球队进行单循环比赛(任意两支球队恰进行一场比赛),任意两支球队之间获胜的概率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小的顺序排列,成绩相同则名次相同.下列结论正确的是( )A.恰有4支球队并列第一为不可能事件B.有可能出现恰有3支球队并列第一C.恰有2支球队并列第一的概率为D.只有1支球队为第一名的概率为14.从a,b,c,d中任取两个字母,则该试验的样本点数为________.15.某中学为了庆祝“天问一号”成功着陆火星,特举办中国航天史知识竞赛,高一某班现有2名男生和2名女生报名,从报名学生中任选2名学生参赛,则恰好选中2名女生的概率为______________.16.在抛掷一枚骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件发生的概率为_____________.17.事件A,B,C是互相独立的事件,若,,,则_______________.18.小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率.(2)这三列火车至少有一列正点到达的概率.19.某校社团活动开展得有声有色,深受学生欢迎,每届高一新生都踊跃报名加入,极大地推动了学生的全面发展.现已知高一某班60名同学中有4名男同学和2名女同学参加心理社团,现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).(1)在该班随机选取1名同学,求该同学参加心理社团的概率;(2)求从6名同学中选出的2名同学代表至少有1名女同学的概率.20.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶。为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
答案以及解析1.答案:C解析:点落在x轴上所包含的样本点的基本特征是.依题意,且A中有9个非零常数,故共包含9个样本点.2.答案:C解析:由题意可得,,则,,所以表示向上的点数是1或2或3.故选C.3.答案:C解析:由题意得,,因为随机调查的消费者中对网上购物“比较满意”或“满意”的人数为,所以随机调查的消费者中对网上购物“比较满意”或“满意”的频率为.由此估计在网上购物的消费者小马对网上购物“比较满意”或“满意”的概率为.故选C.4.答案:C解析:互斥不一定对立,但对立必互斥,①正确;只有A与B是互斥事件时,才有,②错误;若事件A,B,C两两互斥,则,但不一定是必然事件,例如,设样本点空间是由两两互斥的事件A,B,C,D组成且事件D与为对立事件,当时,,③错误.5.答案:C解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则,且事件A与B互斥.所以.即任意取出2粒恰好是同一色的概率为.6.答案:A解析:根据对立事件和互斥事件的概念,可知对立事件一定是互斥事件,两个事件是互斥事件但不一定是对立事件.故选A.7.答案:A解析:2名男生记为,,2名女生记为,,任意选择两人在星期六、星期日参加某公益活动,共有,,,,,,,,,,,这12种情况,而星期六安排一名男生、星期日安排一名女生共有,,,这4种情况,则所求概率.故选A.8.答案:A解析:由题意,样本点空间为.所以共有12种不同排法,而卡片排成“1314”只有1种情况,故所求事件的概率.9.答案:A解析:用事件A表示“旅行团选择去百花村”,事件B表示“旅行团选择去云洞岩”,A,B相互独立,则,.设,,则解得或(舍去),故旅行团选择去百花村的概率是.故选A.10.答案:BD解析:对于A选项,种子长出果实,不长出果实的发生不是等可能的,故A不是古典概型;对于C选项,在区间中样本点的个数是无限多个,故C不是古典概型;对于B和D选项,其中样本点的发生是等可能的,且是有限个.故选BD.11.答案:ABC解析:由题意可知,,,事件“”与事件C为对立事件,且事件A,B,C互斥,所以,所以.故选ABC.12.答案:ACD解析:设“从甲袋中摸出1个红球”为事件,“从乙袋中摸出1个红球为事件,则,,且,独立.对于A选项,2个球都是红球为,其概率为,故A正确;对于B选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为,故B错误;对于C选项,2个球中至少有1个红球的概率为,故C正确;对于D选项,2个球中恰有1个红球的概率为,故D正确.故选ACD.13.答案:ABD解析:4支球队(记为a,b,c,d)进行单循环比赛,有,,,,,,共6场比赛.因为每场比赛都有2种不同结果(如这场比赛有a胜b负和a负b胜这2种结果),所以6场比赛的所有结果共有(种).选项A,这6场比赛中若4支球队优先各赢一场,则还有2场必然有2支或1支队值获胜,那么4支球队所得分值就不可能都一样,故4支球队并列第一是不可能事件,A正确.选项B,在,,,,,6场比赛中,比如依次获胜的可以是a,b,c,a,c,b,此时a,b,c3支球队都获得2分,并列第一,故B正确.选项C,在,,,,,6场比赛中,从4支球队中选2支球队并列第一有ab,ac,ad,bc,bd,cd6种可能,不妨设ab并列第一,根据场比赛结果分类:其中第一类a赢b,则需6场比赛中a和b都能胜2场,c和d都至多胜1场,在,,,,,6场比赛中,获胜的球队依次有a,b,d,a,c,b和a,b,c,d,a,b两种情况;同理,第二类b赢a,也有两种情况,故恰有2支球队并列第一的概率为,故C错误.选项D,从4支球队中选1支为第一名有4种可能;这支球队比赛的3场应该都获胜,则另外3场的可能比赛结果有(种),故只有1支球队为第一名的概率为,故D正确.故选ABD.14.答案:6解析:该试验的结果中,含a的有;不含a,含b的有;不含a、b,含c的有,所以,即该试验的样本,点数为6.15.答案:解析:将2名男同学和2名女同学分别记为a,b,A,B,从中任选2人,有,,,,,,共6种情况,其中恰好选中2名女生的情况有1种,故选中的2人都是女生的概率为.16.答案:解析:由题意可知抛掷一枚骰子,基本事件的个数共有6个,则“不大于4的偶数点出现”的概率,“小于5的点数出现”的概率,则,因为A与互斥,所以.17.答案:解析:设,,,因为,,,所以所以所以.18.答案:(1)概率为0.398.(2)概率为0.994.解析:(1)用A,B,C分别表示这三列火车正点到达的事件,则,所以.由题意得A,B,C之间互相独立,所以恰好有两列火车正点到达的概率为.(2)三列火车至少有一列正点到达的概率为.19.答案:(1)概率(2)概率解析:(1)由题知,该班60名同学中共有6名同学参加心理社团,所以在该班随机选取1名同学,该同学参加心理社团的概率.(2)设A,B,C,D表示参加心理社团的男同学,a,b表示参加心理社团的女同学,则从6名同学中选出的2名同学代表共有15种等可能的结果:,其中至少有1名女同学的结果有9种:,根据古典概率计算公式,从6名同学中选出的2名同学代表至少有1名女同学的概率.20.答案:(1)概率的估计值为0.6(2)概率的估计值为0.8解析:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则;若最高气温位于区间,则;若最高气温不低于25,测,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为.因此Y大于零的90概率的估计值为0.8.
相关试卷
这是一份(9)概率(A卷)——2022-2023学年高一数学人教A版(2019)暑假作业,共12页。试卷主要包含了若A,B是互斥事件,,,则,3B等内容,欢迎下载使用。
这是一份(8)统计(B卷)——2022-2023学年高一数学人教A版(2019)暑假作业,共15页。试卷主要包含了5B,现要完成下列3项抽样调查,2,0等内容,欢迎下载使用。
这是一份(7)统计(A卷)——2022-2023学年高一数学人教A版(2019)暑假作业,共15页。试卷主要包含了45;,已知甲、乙两组按顺序排列的数据等内容,欢迎下载使用。