终身会员
搜索
    上传资料 赚现金
    新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册
    立即下载
    加入资料篮
    新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册01
    新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册02
    新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册

    展开
    这是一份新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册,共8页。

    §4 导数的四则运算法则[教材要点]要点 导数的运算法则若函数f(x),g(x)均为可导函数,则有状元随笔 法则1:函数的和(差)的导数导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形(一般化),即[u(x)±v(x)±…±w(x)]′=u ′(x)±v ′(x)±…±w ′(x).法则2:函数的积的导数(1)(特殊化)当g(x)=c(c为常数)时,法则2可简化为[cf(x)]′=c f ′(x)+c[f(x)]′=0+cf ′(x)=cf ′(x),即 [cf(x)]′=cf ′(x).(2)由上述结论及法则1可得[af(x)+bg(x)]′=af ′(x)+bg ′(x),其中a,b为常数.(3)函数的积的导数可以推广到有限个函数的乘积的导数,即[u(x)v(x)×…×w(x)]′=u ′(x)v(x)×…×w(x)+u(x)v ′(x)×…×w(x)+…+u(x)v(x)×…×w ′(x).法则3:函数的商的导数(1)注意[]′≠.(2)(特殊化)当f(x)=1,g(x)≠0时,= ,[]′=-.[基础自测]1.判断正误(正确的画“√”,错误的画“×”)(1)已知函数y=2ln x-2x,则y′=-2x ln 2.(  )(2)已知函数y=3sin x+cos x,则y′=3cos x+sin x.(  )(3)函数f(x)=xex的导数是f′(x)=ex(x+1).(  )(4)若函数f(x)=,则f′(x)=.(  )2.已知函数f(x)=cos x+ln x,则f′(1)的值为(  )A.1-sin 1 B.1+sin 1C.sin 1-1 D.-sin 13.函数y=sin x·cos x的导数是(  )A.y′=cos2x+sin2x B.y′=cos2x-sin2xC.y′=2cos x·sin x D.y′=cos x·sin x4.若f(x)=(2x+a)2,且f′(2)=20,则a=________.题型一 利用求导公式和法则求导例1 求下列函数的导数(1)y=x4-3x2-5x+6;(2)y=x2+ln x;(3)y=x2·sin x;(4)y=.方法归纳利用导数的公式及运算法则求导的思路跟踪训练1 (1)(多选题)下列求导运算中正确的是(  )A.′=1+B.(lg x)′=C.′=D.(x2cos x)′=-2x sin x(2)求下列函数的导数①y=x2-2x-4ln x;②y=(x+1)(x+2)(x+3);③y=.题型二 导数与曲线的切线问题例2 已知曲线y=在(2,2)处的切线与直线ax+2y+1=0平行,求实数a的值.变式探究1 本例条件不变,求该切线到直线ax+2y+1=0的距离.变式探究2 本例条件不变,求与直线y=-x平行且与曲线相切的直线方程.方法归纳关于函数导数的应用及其解决方法跟踪训练2 (1)设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,则b=________,c=________.(2)已知函数f(x)=x++b(x≠0),其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.易错辨析 不能正确应用导数的运算法则致误例3 求函数y=的导数.解析:∵y==3x-x+5-,∴y′=(3x-x+5-)′=)′==-1=-1.【易错警示】[课堂十分钟]1.若f(x)=x cos x,则f′=(  )A. B.1C.- D.-12.函数y=2x(ln x+1)在x=1处的切线方程为(  )A.y=4x+2 B.y=2x-4C.y=4x-2 D.y=2x+43.(多选题)下列结论中正确的有(  )A.若y=sin ,则y′=0B.若f(x)=3x2-f′(1)x,则f′(1)=3C.若y=-+x,则y′=-+1D.若y=sin x+cos x,则y′=cos x+sin x4.已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2),则f′(2)的值等于________.5.已知函数f(x)=x3+x-16 (1)求f′(x);(2)求曲线y=f(x)在点(2,-6)处的切线的方程.§4 导数的四则运算法则[基础自测]1.答案:(1)√ (2)× (3)√ (4)×2.解析:因为f′(x)=-sin x+,所以f′(1)=-sin 1+=1-sin 1.故选A.答案:A3.解析:y′=(sin x·cos x)′=cos x·cos x+sin x·(-sin x)=cos2x-sin2x.故选B.答案:B4.解析:f(x)=4x2+4ax+a2,∵f′(x)=8x+4a,∴f′(2)=16+4a=20,∴a=1.答案:1题型探究·课堂解透题型一例1 解析:(1)y′=(x4-3x2-5x+6)′=(x4)′-(3x2)′-(5x)′+6′=4x3-6x-5.(2)y′=(x2+ln x)′=(x2)′+(ln x)′=2x+.(3)y′=(x2)′sin x+x2·(sin x)′=2x sin x+x2cos x.(4)y′===.跟踪训练1 解析:(1)′=1-,A错误;(lg x)′=,B正确;′=,C正确;(x2cos x)′=(x2)′cos x+x2(cos x)′=2x cos x-x2sin x.故选BC.(2)①y′=2x-2-;②∵y=(x+1)(x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11;③y′==.答案:(1)BC (2)见解析题型二例2 解析:因为y′==-,所以y′|x=2=-1,即-=-1.所以a=2.变式探究1 解析:由例2知切线方程为x+y-4=0,直线方程x+y+=0,所以所求距离d==.变式探究2 解析:由例2知y′=-.令-=-1,得x=0或2(x=0舍去),所以切线方程为x+y-4=0.跟踪训练2 解析:(1)f′(x)=x2-ax+b,由题意得即解得b=0,c=1.(2)f′(x)=1-,由导数的几何意义,得f′(2)=3,于是a=-8.由切点P(2,f(2))在直线y=3x+1上,可得f(2)=2-+b=-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x-+9.答案:(1)b=0,c=1 (2)见解析[课堂十分钟]1.解析:因为f′=cos x-x sin x,所以f′=-.故选C.答案:C2.解析:由已知y′=2(ln x+1)+2x·=2ln x+4,则y′|x=1=4,又x=1时,y=2,则切线方程为y=4x-2.故选C.答案:C3.解析:若y=sin =,则y′=0,故A正确;若f(x)=3x2-f′(1)·x,则f′(x)=6x-f′(1),令x=1,则f′(1)=6-f′(1),解得f′(1)=3,故B正确;若y=-+x,则y′=-+1,故C正确;若y=sin x+cos x,则y′=cos x-sin x,故D错误.故选ABC.答案:ABC4.解析:由f(x)=x2+3xf′(2),得f′(x)=2x+3f′(2),令x=2,则f′(2)=4+3f′(2),解得f′(2)=-2,答案:-25.解析:(1) f′=3x2+1(2)可判定点在曲线y=f上.∵f′(x)=3x2+1 ∴在点处的切线的斜率为k=f′=13.∴切线的方程为y+6=13,即y=13x-32. 最新课程标准学科核心素养能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.1.会利用导数的四则运算法则求简单函数的导数.(数学运算)2.利用基本初等函数的导数公式和导数的四则运算法则解决与曲线的切线有关的问题.(数学运算)导数运算法则语言叙述1.[f(x)±g(x)]′=f′(x)±g′(x)两个函数的和(差)的导数,等于这两个函数的导数的和(差).2.[f(x)g(x)]′=f′(x)·g(x)+f(x)g′(x)两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数.(g(x)≠0)两个函数的商的导数,等于分子的导数乘以分母,减去分子乘以分母的导数,再除以分母的平方.应用求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.方法先求出函数的导数,若已知切点,则求出切线斜率、切线方程;若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.出错原因纠错心得不对求导的式子进行化简,而是直接利用商的导数公式求解,且误记=致误.利用导数的四则运算法则求导时,应先把原式进行恒等变形进行化简或变形,如把乘法转化为加减法,把商的形式化成和差的形式.本题就是把商化成和差求导,这样容易计算.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材2023版高中数学第二章导数及其应用4导数的四则运算法则学案北师大版选择性必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map