年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析)

    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析)第1页
    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析)第2页
    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析)第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析)

    展开

    这是一份2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷(含解析),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年黑龙江省双鸭山市饶河县高二(下)期中数学试卷
    一、单选题(本大题共8小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)
    1. cos(−510°)的值为(    )
    A. 32 B. − 32 C. 12 D. −12
    2. 在空间直角坐标系中,a=(−2,m,3),b=(3,1,2),a⊥b,则m的值为(    )
    A. 0 B. 1 C. 2 D. −1
    3. 已知复数z满足(2+i)z=2−4i,则z的虚部为(    )
    A. −2i B. 2i C. −2 D. 2
    4. 已知椭圆的方程为x2m+y2n=1(m>0,n>0),离心率e= 32,则下列选项中不满足条件的为(    )
    A. x24+y2=1 B. x28+y22=1 C. x22+y2=1 D. x2+4y2=1
    5. 设随机变量ξ服从正态分布,ξ的分布密度曲线如图所示,若P(ξb>0),c=2,过点(0,b)与(a,0)的直线的斜率为− 33.
    (1)求椭圆C的标准方程;
    (2)设F为椭圆C的右焦点,P为直线x=3上任意一点,过F作PF的垂线交椭圆C于M,N两点,当|MN||PF|取最大值时,求直线MN的方程.
    22. (本小题12.0分)
    设函数f(x)=ae2x+(1−x)ex+a(a∈R).
    (1)当a=e−22时,求g(x)=f′(x)e2−x的单调区间;
    (2)若f(x)有两个极值点x1,x2(x13.
    答案和解析

    1.【答案】B 
    【解析】解:cos(−510°)=cos510°=cos(360°+150°)
    =cos150°=cos(180°−30°)=−cos30°=− 32.
    故选B
    利用余弦函数为偶函数将所求式子化简,再利用诱导公式及特殊角的三角函数值化简,即可求出值.
    此题考查了运用诱导公式化简求值,熟练掌握公式,灵活变换角度是解本题的关键.

    2.【答案】A 
    【解析】解:在空间直角坐标系中,a=(−2,m,3),b=(3,1,2),a⊥b,
    ∴a⋅b=−6+m+6=0,
    解得m=0.
    故选:A.
    利用向量垂直的定义直接求解.
    本题考查向量垂直的性质等基础知识,考查运算求解能力,是基础题.

    3.【答案】C 
    【解析】解:(2+i)z=2−4i,
    则z=2−4i2+i=(2−4i)(2−i)(2+i)(2−i)=−2i,其虚部为−2.
    故选:C.
    根据已知条件,结合复数的四则运算,以及虚部的定义,即可求解.
    本题主要考查复数的四则运算,以及虚部的定义,属于基础题.

    4.【答案】C 
    【解析】解:由x24+y2=1,可得a=2,b=1,∴c= a2−b2= 3,故离心率e= 32,故A正确;
    由x28+y22=1,可得a=2 2,b= 2,∴c= a2−b2= 6,故离心率e= 62 2= 32,故B正确;
    由x22+y2=1,可得a= 2,b=1,∴c= a2−b2=1,故离心率e=1 2= 22,故C不正确;
    由x2+4y2=1,可得x2+y214=1,可得a=1,b=12,c= a2−b2= 32,故离心率e= 32,故D正确.
    故选:C.
    根据椭圆的几何性质,求解即可判断每个选项的正确性.
    本题考查椭圆的离心率,属基础题.

    5.【答案】C 
    【解析】解:根据题意,且P(ξ2 33,
    综上所述|MN||PF|的最大值为 3,此时直线MN的方程为x=±y+2,
    即此时直线MN的方程为:x±y−2=0. 
    【解析】(1)由直线的斜率及c的值和a,b,c之间的关系,求出a,b的值,进而求出椭圆的标准方程;
    (2)分直线PF的斜率为0和不为0两种情况讨论,设直线PF的方程,由题意可得P的坐标,进而求出|PF|的值,由题意设直线MN的方程,与椭圆的方程联立,可得两根之和及两根之积,进而求出|MN|的表达式,再求|MN||PF|的表达式,由均值不等式,可得|MN||PF|的最大值,进而求出此时直线MN的方程.
    本题考查椭圆方程的求法及直线与椭圆的综合应用,均值不等式的应用,属于中档题.

    22.【答案】解:(1)当a=e−22时,f(x)=e2x−22+(1−x)ex+e−22,f′(x)=e2x−2−xex,
    故g(x)=ex−xe2,
    所以g′(x)=ex−e2,
    当x∈(−∞,2)时,g′(x)0,
    所以g(x)的单调递减区间为(−∞,2),单调递增区间为(2,+∞).
    (2)①f′(x)=ex(2aex−x),依据题意可知f′(x)=0有两个不等实数根,
    即2aex−x=0有两个不等实数根x1,x2.
    由2aex−x=0,得a=x2ex,
    所以2aex−x=0有两个不等实数根可转化为
    函数y=a和y=x2ex的图象有两个不同的交点,
    令h(x)=x2ex,则h′(x)=1−x2ex,
    由h′(x)>0,解得x0时,h(x)>0,当x3.
    令t=x1−x2,则t3等价于tet−1(et+2)>3.
    所以只要不等式(3−t)et−2t−3>0在t

    相关试卷

    2022-2023学年黑龙江省双鸭山市饶河县高二下学期期中数学试题含答案:

    这是一份2022-2023学年黑龙江省双鸭山市饶河县高二下学期期中数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年黑龙江省哈尔滨市高二(下)期末数学试卷(含解析):

    这是一份2022-2023学年黑龙江省哈尔滨市高二(下)期末数学试卷(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年黑龙江省双鸭山市第一中学高一下学期期中数学试题含解析:

    这是一份2022-2023学年黑龙江省双鸭山市第一中学高一下学期期中数学试题含解析,共16页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map