_2022年湖北省恩施州中考数学真题及答案
展开2022年湖北省恩施州中考数学真题及答案
本试卷共6页,24个小题,满分120分,考试用时120分钟
注意事项:
1.考生答题全部在答题卷上,答在试题卷上无效,
2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、准考证号码是否与本人相符合,再将自己的姓名、准考证号码用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上.
3.选择题作答必须用2B铅笔将答题卷上对应的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
5.考生不得折叠答题卷,保持答题卷的整洁.考试结束后,请将试题卷和答题卷一并上交.
一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).
1. 8的相反数是()
A. B. 8 C. D.
【答案】A
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】解:8的相反数是,
故选A.
【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.
2. 下列图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
【答案】B
【解析】
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.是轴对称图形,又是中心对称图形,故本选项符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不符合题意;
D.不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
3. 函数的自变量x的取值范围是()
A. B.
C. 且 D.
【答案】C
【解析】
【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.
【详解】解:∵有意义,
∴,
解得且,
故选C.
【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.
4. 下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()
A. “恩” B. “乡” C. “村” D. “兴”
【答案】D
【解析】
【分析】根据正方体的平面展开图的特点即可得.
【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,
故选:D.
【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.
5. 下列运算正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】根据同底数幂的乘除法、合并同类项法则、幂的乘方法则逐项判断即可得.
【详解】解:A、,则此项错误,不符题意;
B、,则此项错误,不符题意;
C、与不是同类项,不可合并,则此项错误,不符题意;
D、,则此项正确,符合题意;
故选:D.
【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键.
6. 为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示:
月用水量(吨)
3
4
5
6
户数
4
6
8
2
关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的是()
A. 众数是5 B. 平均数是7 C. 中位数是5 D. 方差是1
【答案】A
【解析】
【分析】根据众数、平均数、中位数、方差的定义及求法,即可一一判定.
【详解】解:5吨出现的次数最多,故这组数据的众数是5,故A正确;
这组数据的平均数为:(吨),故B不正确;
这组数据共有20个,故把这组数据从小到大排列后,第10个和第11个数据的平均数为这组数据的中位数,第10个数据为4,第11个数据为5,故这组数据的中位数为:,故C不正确;
这组数据的方差为:,故D不正确;
故选:A.
【点睛】本题考查了众数、平均数、中位数、方差的定义及求法,熟练掌握和运用众数、平均数、中位数、方差的定义及求法,是解决本题的关键.
7. 已知直线,将含30°角的直角三角板按图所示摆放.若,则()
A. 120° B. 130° C. 140° D. 150°
【答案】D
【解析】
【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.
详解】解:如图,
根据题意得:∠5=30°,
∵,
∴∠3=∠1=120°,
∴∠4=∠3=120°,
∵∠2=∠4+∠5,
∴∠2=120°+30°=150°.
故选:D
【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.
8. 一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是()
A. B.
C. D.
【答案】A
【解析】
【分析】先分别根据“顺流速度静水速度江水速度”、“逆流速度静水速度江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行与逆流航行所用时间相等”建立方程即可得.
【详解】解:由题意得:轮船的顺流速度为,逆流速度为,
则可列方程为,
故选:A.
【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.
9. 如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、N,连接BM、DN.若,.则四边形MBND的周长为()
A. B. 5 C. 10 D. 20
【答案】C
【解析】
【分析】先根据矩形的性质可得,再根据线段垂直平分线的性质可得,根据等腰三角形的性质可得,从而可得,根据平行线的判定可得,然后根据菱形的判定可得四边形是菱形,设,则,在中,利用勾股定理可得的值,最后根据菱形的周长公式即可得.
【详解】解:四边形是矩形,
,
,
由作图过程可知,垂直平分,
,
,
,
,
四边形是平行四边形,
又,
平行四边形是菱形,
设,则,
在中,,即,
解得,
则四边形的周长为,
故选:C.
【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理、线段垂直平分线等知识点,熟练掌握菱形的判定与性质是解题关键.
10. 图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为,其图象如图2所示,其中为青海湖水面大气压强,k为常数且.根据图中信息分析(结果保留一位小数),下列结论正确的是()
A. 青海湖水深16.4m处的压强为188.6cmHg
B. 青海湖水面大气压强为76.0cmHg
C. 函数解析式中自变量h的取值范围是
D. P与h的函数解析式为
【答案】A
【解析】
【分析】根据函数图象求出函数解析式逐一进行判断即可求解.
【详解】将点代入
即
解得
,故D不正确;
当时,,则青海湖水面大气压强为68.0cmHg,故B不正确;
函数解析式中自变量h的取值范围是,故C不正确;
所以只有A正确,
故选:A
【点睛】本题考查了一次函数的应用,待定系数法求解析式,从函数图像获取信息是解题的关键.
11. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()
A. 当时,四边形ABMP为矩形
B. 当时,四边形CDPM为平行四边形
C. 当时,
D. 当时,或6s
【答案】D
【解析】
【分析】计算AP和BM的长,得到AP≠BM,判断选项A;计算PD和CM的长,得到PD≠CM,判断选项B;按PM=CD,且PM与CD不平行,或PM=CD,且PM∥CD分类讨论判断选项C和D.
【详解】解:由题意得PD=t,AP=AD-PD=10-t,BM=t,CM=8-t,∠A=∠B=90°,
A、当时,AP=10-t=6 cm,BM=4 cm,AP≠BM,则四边形ABMP不是矩形,该选项不符合题意;
B、当时,PD=5 cm,CM=8-5=3 cm,PD≠CM,则四边形CDPM不是平行四边形,该选项不符合题意;
作CE⊥AD于点E,则∠CEA=∠A=∠B=90°,
∴四边形ABCE是矩形,
∴BC=AE=8 cm,
∴DE=2 cm,
当PM=CD,且PM与CD不平行时,作MF⊥AD于点F,CE⊥AD于点E,
∴四边形CEFM是矩形,
∴FM=CE;
∴Rt△PFM≌Rt△DEC(HL),
∴PF=DE=2,EF=CM=8-t,
∴AP=10-4-(8-t)=10-t,
解得t=6 s;
当PM=CD,且PM∥CD时,
∴四边形CDPM是平行四边形,
∴DP=CM,
∴t=8-t,
解得t=4 s;
综上,当PM=CD时,t=4s或6s;选项C不符合题意;选项D符合题意;
故选:D.
【点睛】此题重点考查矩形的判定与性质、全等三角形的判定与性质,解题的关键是正确地作出解题所需要的辅助线,应注意分类讨论,求出所有符合条件的t的值.
12. 已知抛物线,当时,;当时,.下列判断:
①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有()个.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
【分析】利用根的判别式可判断①;把,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a=>0,开口向上,且当时,;当时,,
∴抛物线与x轴有两个不同的交点,
∴,
∴;故①正确;
∵当时,,
∴-b+c<0,即b>+c,
∵c>1,
∴b>,故②正确;
抛物线的对称轴为直线x=b,且开口向上,
当x ∴当时,;故③正确;
∵方程的两实数根为x1,x2,
∴x1+x2=2b,
∵当c>1时,b>,
∴则x1+x2>3,但当c<1时,则b未必大于,则x1+x2>3的结论不成立,
故④不正确;
综上,正确的有①②③,共3个,
故选:C.
【点睛】本题考查了二次函数的性质,一元二次方程的根的判别式以及根与系数的关系等知识,解题的关键是读懂题意,灵活运用所学知识解决问题.
二、填空题(本大题共有4小题,每小题3分,共12分).
13. 9的算术平方根是.
【答案】3
【解析】
【分析】根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】∵,
∴9算术平方根为3.
故答案为:3.
【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
14. 因式分解:=_______.
【答案】
【解析】
【分析】先提公因式,再利用完全平方公式解题.
【详解】解:
故答案为:.
【点睛】本题考查因式分解,涉及提公因式、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.
15. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.
【答案】
【解析】
【分析】利用切线长定理求得⊙O的半径,根据S阴影=S△ABC-( S扇形EOF+ S扇形DOF)- S正方形CDOE列式计算即可求解.
【详解】解:设切点分别为D、E、F,连接OD、OE、OF,
∵⊙O为Rt△ABC的内切圆,
∴AE=AF、BD=BF、CD=CE,OD⊥BC,OE⊥AC,
∵∠C=90°,
∴四边形CDOE为正方形,
∴∠EOF+∠FOD=360°-90°=270°,
设⊙O的半径为x,则CD=CE=x,AE=AF=4-x,BD=BF=3-x,
∴4-x+3-x=5,
解得x=1,
∴S阴影=S△ABC-( S扇形EOF+ S扇形DOF)- S正方形CDOE
=×3×4-×1×1
=5-.
故答案为:5-.
【点睛】本题考查了切线长定理,扇形的面积公式,熟记各图形的性质并准确识图是解题的关键.
16. 观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为,且满足.则________,________.
【答案】 ①. ②.
【解析】
【分析】由题意推导可得an=,即可求解.
【详解】解:由题意可得:a1=2=,a2=,a3=,
∵,
∴2+=7,
∴a4=,
∵,
∴a5=,
同理可求a6=,
∴an=,
∴a2022=,
故答案为:,.
【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键.
三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
17. 先化简,再求值:,其中.
【答案】,
【解析】
【分析】先将除法转化为乘法,根据分式的性质约分,然后根据分式的减法进行化简,最后代入字母的值即可求解.
【详解】解:原式=
;
当时,原式.
【点睛】本题考查了分式的化简求值,分母有理化,正确的计算是解题的关键.
18. 如图,已知四边形ABCD是正方形,G为线段AD上任意一点,于点E,于点F.求证:.
【答案】证明见解析
【解析】
【分析】先根据正方形的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据三角形全等的判定定理证出,根据全等三角形的性质可得,最后根据线段的和差、等量代换即可得证.
【详解】证明:四边形是正方形,
,
,
,
,
,
,
在和中,,
,
,
,
.
【点睛】本题考查了正方形的性质、三角形全等的判定与性质等知识点,正确找出两个全等三角形是解题关键.
19. 2022年4月29日,湖北日报联合夏风教室发起“劳动最光荣,加油好少年”主题活动.某校学生积极参与本次主题活动,为了解该校学生参与本次主题活动的情况,随机抽取该校部分学生进行调查.根据调查结果绘制如下不完整的统计图(图).请结合图中信息解答下列问题:
(1)本次共调查了________名学生,并补全条形统计图.
(2)若该校共有1200名学生参加本次主题活动,则本次活动中该校“洗衣服”学生约有多少名?
(3)现从参与本次主题活动甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受.请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.
【答案】(1);画图见解析
(2)
(3)
【解析】
【分析】(1)由做饭的人数及其所占百分比可得答案;利用总人数减去其他的人数即可求得扫地人数,然后补全统计图即可;
(2)用1200乘以洗衣服所占的百分比即可求出答案;
(3)画出树状图即可求出甲、乙两人同时被抽中的概率.
【小问1详解】
解:本次调查的学生总人数为:;
扫地的学生人数为:,
条形统计图如图:
【小问2详解】
解:,
即本次活动中该校“洗衣服”的学生约有300名;
【小问3详解】
解:画出树状图为:
共有12种等可能的结果,其中抽取的两人恰好为甲和乙的结果有2种,
则抽取的两人恰好是甲和乙的概率为:.
【点睛】本题主要考查了条形统计图,扇形统计图,由样本估计总体,画树状图或列表法求概率,掌握列表法或树状图求概率是解题的关键.
20. 如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB的长(参考数据:,,结果精确到1m).
【答案】古亭与古柳之间的距离的长约为
【解析】
【分析】过点作的垂线,交延长线于点,设,则,分别在和中,解直角三角形求出的长,再建立方程,解方程可得的值,由此即可得出答案.
【详解】解:如图,过点作的垂线,交延长线于点,
由题意得:,
设,则,
在中,,
在中,,,
则,
解得,
则,
答:古亭与古柳之间的距离的长约为.
【点睛】本题考查了解直角三角形的应用,通过作辅助线,构造直角三角形是解题关键.
21. 如图,在平面直角坐标系中,O为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=(k≠0)的图象经过点D.
(1)求反比例函数的解析式;
(2)若AB所在直线解析式为,当时,求x的取值范围.
【答案】(1)反比例函数的解析式为y1=;
(2)当时,0
【分析】(1)利用等腰直角三角形的性质以及S△ABC=3S△ADC,求得DC=2,得到D (6,4),利用待定系数法即可求解;
(2)利用待定系数法求得直线AB的解析式,解方程x+2=,求得直线y2= x+2与反比例函数y1=的图象的两个交点,再利用数形结合思想即可求解.
【小问1详解】
解:∵A(0,2),C(6,2),
∴AC=6,
∵△ABC是等腰直角三角形,
∴AC=BC=6,
∵S△ABC=3S△ADC,
∴BC=3DC,
∴DC=2,
∴D (6,4),
∵反比例函数y1=(k≠0)的图象经过点D,
∴k=6×4=24,
∴反比例函数的解析式为y1=;
【小问2详解】
∵C(6,2),BC=6,
∴B (6,8),
把点B、A的坐标分别代入中,得,
解得:,
∴直线AB的解析式为,
解方程x+2=,
整理得:x2+2x-24=0,
解得:x=4或x=-6,
∴直线y2= x+2与反比例函数y1=的图象的交点为(4,6)和(-6,-4),
∴当时,0
22. 某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.
(1)租用甲、乙两种客车每辆各多少元?
(2)若学校计划租用8辆客车,怎样租车可使总费用最少?
【答案】(1)甲种客车每辆元,乙种客车每辆元
(2)租用甲种客车2辆,乙种客车6辆,租车费用最低为2200元
【解析】
【分析】(1)可设甲种客车每辆元,乙种客车每辆元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;
(2)设租车费用为元,租用甲种客车辆,根据题意列出不等式组,求出的取值范围,进而列出关于的函数关系式,根据一次函数的性质求解即可.
【小问1详解】
解:设甲种客车每辆元,乙种客车每辆元,依题意知,
,解得,
答:甲种客车每辆元,乙种客车每辆元;
【小问2详解】
解:设租车费用为元,租用甲种客车辆,则乙种客车辆,
,
解得:,
,
,
随的增大而减小,
取整数,
最大为2,
时,费用最低为(元,
(辆.
答:租用甲种客车2辆,乙种客车6辆,租车费用最低为2200元.
【点睛】本题考查一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
23. 如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
【答案】(1)见解析(2)见解析
(3)CE的长为2.
【解析】
【分析】(1)连接OA,根据切线的性质得到∠OAE+∠PAE=90°,根据圆周角定理得到∠OAE+∠DAO=90°,据此即可证明∠ADE=∠PAE;
(2)由(1)得∠ADE=∠PAE =30°,∠AED =60°,利用三角形外角的性质得到∠APE=∠AED-∠PAE =30°,再根据等角对等边即可证明AE=PE;
(3)证明Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,推出DC×CE=OC×PC,设CE=x,据此列方程求解即可.
【小问1详解】
证明:连接OA,
∵PA为⊙O的切线,
∴OA⊥PA,即∠OAP=90°,
∴∠OAE+∠PAE=90°,
∵DE为⊙O的直径,
∴∠DAE=90°,即∠OAE+∠DAO=90°,
∴∠DAO=∠PAE,
∵OA=OD,
∴∠DAO=∠ADE,
∴∠ADE=∠PAE;
【小问2详解】
证明:∵∠ADE=30°,
由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,
∴∠APE=∠AED-∠PAE =30°,
∴∠APE=∠PAE =30°,
∴AE=PE;
【小问3详解】
解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.
∴AB⊥PD,
∵∠DAE=90°,∠OAP=90°,
∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,
∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,
∴∠CAE=∠D,∠PAC=∠AOC,
∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,
∴
∴AC2=DC×CE,AC2=OC×PC,
即DC×CE=OC×PC,
设CE=x,则DE=6+x,OE=3+,OC=3+-x=3-,PC=4+x,
∴6x=(3-)( 4+x),
整理得:x2+10x-24=0,
解得:x=2(负值已舍).
∴CE的长为2.
【点睛】本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,解题的关键是学会利用参数构建方程解决问题.
24. 在平面直角坐标系中,O为坐标原点,抛物线与y轴交于点.
(1)直接写出抛物线的解析式.
(2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出拋物线平移的最短距离并求出此时抛物线的顶点坐标.
【答案】(1)
(2)以B、C、Q三点为顶点的三角形是直角三角形,理由见解析
(3)存在,或,
(4)最短距离为,平移后的顶点坐标为
【解析】
【分析】(1)待定系数法求二次函数解析式;
(2)分别求得B、C、Q的坐标,勾股定理的逆定理验证即可求解;
(3)由,故分两种情况讨论,根据相似三角形的性质与判定即可求解;
(4)如图,作且与抛物线只有1个交点,交轴于点,过点作于点,则是等腰直角三角形,作于,进而求得直线与的距离,即为所求最短距离,进而求得平移方式,将顶点坐标平移即可求解.
【小问1详解】
解:∵抛物线与y轴交于点
∴
抛物线解析式为
【小问2详解】
以B、C、Q三点为顶点的三角形是直角三角形,理由如下:
的顶点坐标为
依题意得,
平移后的抛物线解析式为
令,解
得
令,则,即
以B、C、Q三点为顶点的三角形是直角三角形
【小问3详解】
存在,或,理由如下,
,,
是等腰直角三角形
设直线解析式为,
则,
解得,
直线的解析式为,
联立
解得,
,,是等腰直角三角形
,
设直线的解析式为,
直线的解析式为
当时,
设的解析式为,由NT过点
则
解得
解析式为,
令
解得
,
②当时,则
即
解得
综上所述,或
【小问4详解】
如图,作,交轴于点,过点作于点,则是等腰直角三角形,作于
直线的解析式为
设与平行的且与只有一个公共点的直线解析式为
则
整理得:
则
解得
直线的解析式为
,
即拋物线平移的最短距离为,方向为方向
∴把点P先向右平移EF的长度,再向下平移FC的长度即得到平移后的坐标
平移后的顶点坐标为,即
【点睛】本题是二次函数综合,考查了相似三角形的性质,求二次函数与一次函数解析式,二次函数图象的平移,勾股定理的逆定理,正确的添加辅助线以及正确的计算是解题的关键.
2018年湖北省恩施州中考数学真题及答案: 这是一份2018年湖北省恩施州中考数学真题及答案,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年湖北省恩施州中考数学真题(解析版): 这是一份2022年湖北省恩施州中考数学真题(解析版),共29页。
2023年湖北省恩施州中考数学真题及参考答案: 这是一份2023年湖北省恩施州中考数学真题及参考答案,共9页。