终身会员
搜索
    上传资料 赚现金

    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

    立即下载
    加入资料篮
    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类第1页
    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类第2页
    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类第3页
    还剩26页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

    展开

    这是一份江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类,共29页。试卷主要包含了综合与实践,课本再现等内容,欢迎下载使用。
    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
    一.二次函数的应用(共1小题)
    1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
    (1)c的值为    ;
    (2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
    ②若a=﹣时,运动员落地点要超过K点,则b的取值范围为    ;
    (3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.

    二.二次函数综合题(共2小题)
    2.(2023•江西)综合与实践
    问题提出
    某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF的面积为S,探究S与t的关系.
    初步感知
    (1)如图1,当点P由点C运动到点B时,
    ①当t=1时,S=   ;
    ②S关于t的函数解析式为    .
    (2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S关于t的函数解析式及线段AB的长.
    延伸探究
    (3)若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.
    ①t1+t2=   ;
    ②当t3=4t1时,求正方形DPEF的面积.

    3.(2021•江西)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.
    感知特例
    (1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:

    B(﹣1,3)
    O(0,0)
    C(1,﹣1)
    A(    ,   )
    D(3,3)


    B'(5,﹣3)
    O′(4,0)
    C'(3,1)
    A′(2,0)
    D'(1,﹣3)

    ①补全表格;
    ②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.

    形成概念
    我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.

    探究问题
    (2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为    ;
    ②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是    (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);
    ③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.
    三.四边形综合题(共2小题)
    4.(2022•江西)综合与实践
    问题提出
    某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).
    操作发现
    (1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为    ;当OF与BC垂直时,重叠部分的面积为    ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为    ;
    类比探究
    (2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.
    ①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;
    ②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);
    拓展应用
    (3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).

    5.(2021•江西)课本再现
    (1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是    ;

    类比迁移
    (2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是    ;
    方法运用
    (3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.
    ①求证:∠ABC+∠ADC=90°;
    ②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).

    四.圆的综合题(共1小题)
    6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.
    (1)求证:∠CAD=∠ECB;
    (2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.
    ①请判断四边形ABCO的形状,并说明理由;
    ②当AB=2时,求AD,AC与围成阴影部分的面积.

    五.相似形综合题(共1小题)
    7.(2023•江西)课本再现
    思考
    我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?
    可以发现并证明菱形的一个判定定理;
    对角线互相垂直的平行四边形是菱形.
    定理证明
    (1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.
    已知:在▱ABCD中,对角线BD⊥AC,垂足为O.
    求证:▱ABCD是菱形.

    知识应用
    (2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.
    ①求证:▱ABCD是菱形;
    ②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.
    六.解直角三角形的应用(共1小题)
    8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)

    (1)连接CD,求证:DC⊥BC;
    (2)求雕塑的高(即点E到直线BC的距离).
    (参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

    江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
    参考答案与试题解析
    一.二次函数的应用(共1小题)
    1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
    (1)c的值为  66 ;
    (2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
    ②若a=﹣时,运动员落地点要超过K点,则b的取值范围为  b> ;
    (3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.

    【答案】(1)66;
    (2)①基准点K的高度h为21m;
    ②b>;
    (3)他的落地点能超过K点,理由见解答过程.
    【解答】解:(1)∵起跳台的高度OA为66m,
    ∴A(0,66),
    把A(0,66)代入y=ax2+bx+c得:
    c=66,
    故答案为:66;
    (2)①∵a=﹣,b=,
    ∴y=﹣x2+x+66,
    ∵基准点K到起跳台的水平距离为75m,
    ∴y=﹣×752+×75+66=21,
    ∴基准点K的高度h为21m;
    ②∵a=﹣,
    ∴y=﹣x2+bx+66,
    ∵运动员落地点要超过K点,
    ∴x=75时,y>21,
    即﹣×752+75b+66>21,
    解得b>,
    故答案为:b>;
    (3)他的落地点能超过K点,理由如下:
    ∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,
    ∴抛物线的顶点为(25,76),
    设抛物线解析式为y=a(x﹣25)2+76,
    把(0,66)代入得:
    66=a(0﹣25)2+76,
    解得a=﹣,
    ∴抛物线解析式为y=﹣(x﹣25)2+76,
    当x=75时,y=﹣×(75﹣25)2+76=36,
    ∵36>21,
    ∴他的落地点能超过K点.
    二.二次函数综合题(共2小题)
    2.(2023•江西)综合与实践
    问题提出
    某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF的面积为S,探究S与t的关系.
    初步感知
    (1)如图1,当点P由点C运动到点B时,
    ①当t=1时,S= 3 ;
    ②S关于t的函数解析式为  S=t2+2 .
    (2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S关于t的函数解析式及线段AB的长.
    延伸探究
    (3)若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.
    ①t1+t2= 4 ;
    ②当t3=4t1时,求正方形DPEF的面积.

    【答案】(1)①3;②S=t2+2;
    (2)S=t2﹣8t+18(2≤t≤8),AB=6;
    (3)①4;②正方形DPEF的面积为.
    【解答】解:(1)①当t=1时,CP=1,
    又∵∠C=90°,CD=,
    ∴S=DP2=CP2+CD2=12+()2=3.
    故答案为:3;
    ②当点P由点C运动到点B时,CP=t,
    ∵∠C=90°,CD=,
    ∴S=DP2=CP2+CD2=t2+()2=t2+2.
    故答案为:S=t2+2;
    (2)由图2可得:当点P运动到点B处时,PD2=BD2=6,当点P运动到点A处时,PD2=AD2=18,
    抛物线的顶点坐标为(4,2),

    ∴BC===2,AD==3,
    ∴M(2,6),
    设S=a(t﹣4)2+2,将M(2,6)代入,得4a+2=6,
    解得:a=1,
    ∴S=(t﹣4)2+2=t2﹣8t+18,
    ∴AC=AD+CD=3+=4,
    在Rt△ABC中,AB===6,
    CB+AC=2+6=8,
    ∴抛物线的解析式为S=t2﹣8t+18(2≤t≤8);
    (3)①如图,则∠AHD=90°=∠C,

    ∵∠DAH=∠BAC,
    ∴△ADH∽△ABC,
    ∴==,即==,
    ∴DH=,AH=4,
    ∴BH=2,DH=CD,
    ∵存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等,
    ∴DP1=DP2=DP3,
    ∴CP1=t1,P2H=4﹣t2,
    在Rt△CDP1和Rt△HDP2中,

    ∴Rt△CDP1≌Rt△HDP2(HL),
    ∴CP1=HP2,
    ∴t1=4﹣t2,
    ∴t1+t2=4.
    故答案为:4;
    ②∵DP3=DP1,DH=DC,∠DHP3=∠C=90°,
    ∴Rt△DHP3≌Rt△DCP1(HL),
    ∴P3H=CP1,
    ∵P3H=t3﹣4,
    ∴t3﹣4=t1,
    ∵t3=4t1,
    ∴t1=,
    ∴S=()2+2=.
    3.(2021•江西)二次函数y=x2﹣2mx的图象交x轴于原点O及点A.
    感知特例
    (1)当m=1时,如图1,抛物线L:y=x2﹣2x上的点B,O,C,A,D分别关于点A中心对称的点为B′,O′,C′,A′,D′,如表:

    B(﹣1,3)
    O(0,0)
    C(1,﹣1)
    A(  2 , 0 )
    D(3,3)


    B'(5,﹣3)
    O′(4,0)
    C'(3,1)
    A′(2,0)
    D'(1,﹣3)

    ①补全表格;
    ②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L'.

    形成概念
    我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.

    探究问题
    (2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为  ﹣3≤x≤﹣1 ;
    ②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是  y=ax2 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);
    ③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.
    【答案】(1)①(2,0);
    ②所画图象见解答;
    (2)①﹣3≤x≤﹣1;
    ②y=ax2;
    ③m=±1.
    【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,
    ∴点A为BB′的中点,
    设点A(m,n),
    ∴m==2,n==0,
    故答案为:(2,0);
    ②所画图象如图1所示,

    (2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,
    抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,
    ∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,
    故答案为:﹣3≤x≤﹣1;
    ②∵抛物线y=x2﹣2mx的“孔像抛物线”是y=﹣x2+6mx﹣8m2,
    ∴设符合条件的抛物线M解析式为y=a′x2+b′x+c′,
    令a′x2+b′x+c′=﹣x2+6mx﹣8m2,
    整理得(a′+1)x2+(b′﹣6m)x+(c′+8m2)=0,
    ∵抛物线M与抛物线L′有唯一交点,
    ∴分下面两种情形:
    i)当a′=﹣1时,无论b′为何值,都会存在对应的m使得b′﹣6m=0,此时方程无解或有无数解,不符合题意,舍去;
    ii)当a′≠﹣1时,Δ=(b′﹣6m)2﹣4(a′+1)(c′+8m2)=0,
    即b′2﹣12b′m+36m2﹣4(a′+1)•8m2﹣4c′(a′+1)=0,
    整理得[36﹣32(a′+1)]m2﹣12b′m+b′2﹣4c′(a′+1)=0,
    ∵当m取不同值时,两抛物线都有唯一交点,
    ∴当m取任意实数,上述等式都成立,即:上述等式成立与m取值无关,
    ∴,
    解得a′=,b′=0,c′=0,
    则y=x2,
    故答案为:y=ax2;
    ③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),
    其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),
    抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),
    ∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:
    i)直线y=m经过M(m,﹣m2),
    ∴m=﹣m2,
    解得:m=﹣1或m=0(舍去),
    ii)直线y=m经过N(3m,m2),
    ∴m=m2,
    解得:m=1或m=0(舍去),
    iii)直线y=m经过A(2m,0),
    ∴m=0,
    但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,
    综上所述,m=±1.
    三.四边形综合题(共2小题)
    4.(2022•江西)综合与实践
    问题提出
    某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).
    操作发现
    (1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为  1 ;当OF与BC垂直时,重叠部分的面积为  1 ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为  S1=S ;
    类比探究
    (2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.
    ①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;
    ②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);
    拓展应用
    (3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).

    【答案】(1)1,1,S1=S;
    (2)①证明见解析部分;
    ②﹣1;
    (3)S2的最小值为tan,S2的最大值为1﹣tan(45°﹣α).
    【解答】解:(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;
    当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;
    一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.
    理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC于点N.

    ∵O是正方形ABCD的中心,
    ∴OM=ON,
    ∵∠OMB=∠ONB=∠B=90°,
    ∴四边形OMBN是矩形,
    ∵OM=ON,
    ∴四边形OMBN是正方形,
    ∴∠MON=∠EOF=90°,
    ∴∠MOJ=∠NOK,
    ∵∠OMJ=∠ONK=90°,
    ∴△OMJ≌△ONK(AAS),
    ∴S△PMJ=S△ONK,
    ∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,
    ∴S1=S.
    故答案为:1,1,S1=S.

    (2)①如图2中,结论:△OMN是等边三角形.

    理由:过点O作OT⊥BC,
    ∵O是正方形ABCD的中心,
    ∴BT=CT,
    ∵BM=CN,
    ∴MT=TN,
    ∵OT⊥MN,
    ∴OM=ON,
    ∵∠MON=60°,
    ∴△MON是等边三角形;

    ②如图3中,连接OC,过点O作OJ⊥BC于点J.

    ∵CM=CN,∠OCM=∠OCN,OC=OC,
    ∴△OCM≌△OCN(SAS),
    ∴∠COM=∠CON=30°,
    ∴∠OMJ=∠COM+∠OCM=75°,
    ∵OJ⊥CB,
    ∴∠JOM=90°﹣75°=15°,
    ∵BJ=JC=OJ=1,
    ∴JM=OJ•tan15°=2﹣,
    ∴CM=CJ﹣MJ=1﹣(2﹣)=﹣1,
    ∴S四边形OMCN=2××CM×OJ=﹣1.

    (3)如图4﹣1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.

    在Rt△MOQ中,MQ=OQ•tan=tan,
    ∴MN=2MQ=2tan,
    ∴S2=S△OMN=×MN×OQ=tan.

    如图4﹣2中,当CM=CN时,S2最大.

    同法可证△COM≌△CON,
    ∴∠COM=α,
    ∵∠COQ=45°,
    ∴∠MOQ=45°﹣α,
    QM=OQ•tan(45°﹣α)=tan(45°﹣α),
    ∴MC=CQ﹣MQ=1﹣tan(45°﹣α),
    ∴S2=2S△CMO=2××CM×OQ=1﹣tan(45°﹣α).
    5.(2021•江西)课本再现
    (1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是  ∠DCE′ ;

    类比迁移
    (2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是  AD2+DE2=AE2 ;
    方法运用
    (3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.
    ①求证:∠ABC+∠ADC=90°;
    ②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).

    【答案】(1)∠DCE′.
    (2)AD2+DE2=AE2.
    (3)①证明见解析部分.
    ②.
    【解答】(1)解:如图1中,由图形的拼剪可知,∠A=∠DCE′,
    故答案为:∠DCE′.
    (2)解:如图2中,


    ∵∠ADC+∠ABC=90°,∠CDE=∠ABC,
    ∴∠ADE=∠ADC+∠CDE=90°,
    ∴AD2+DE2=AE2.
    故答案为:AD2+DE2=AE2.

    (3)①证明:如图3中,连接OC,作△ADC的外接圆⊙O.

    ∵点O是△ACD两边垂直平分线的交点
    ∴点O是△ADC的外心,
    ∴∠AOC=2∠ADC,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠AOC+∠OAC+∠OCA=180°,∠OAC=∠ABC,
    ∴2∠ADC+2∠ABC=180°,
    ∴∠ADC+∠ABC=90°.

    ②解:如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.

    ∵∠CTD=∠CAB=90°,∠CDT=∠ABC,
    ∴△CTD∽△CAB,
    ∴∠DCT=∠ACB,=,
    ∴=,∠DCB=∠TCA
    ∴△DCB∽△TCA,
    ∴=,
    ∵=2,
    ∴AC:BA:BC=CT:DT:CD=1:2:,
    ∴BD=AT,
    ∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=n,AD=m,
    ∴AT===,
    ∴BD=.
    四.圆的综合题(共1小题)
    6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.
    (1)求证:∠CAD=∠ECB;
    (2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.
    ①请判断四边形ABCO的形状,并说明理由;
    ②当AB=2时,求AD,AC与围成阴影部分的面积.

    【答案】(1)证明见解答;
    (2)①是菱形,理由见解答;
    ②+π.
    【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,
    ∴∠CBE=∠D,
    ∵AD为⊙O的直径,
    ∴∠ACD=90°,
    ∴∠D+∠CAD=90°,
    ∴∠CBE+∠CAD=90°,
    ∵CE⊥AB,
    ∴∠CBE+∠BCE=90°,
    ∴∠CAD=∠BCE;

    (2)①四边形ABCO是菱形,理由:
    ∵∠CAD=30°,
    ∴∠COD=2∠CAD=60°,
    ∵CE是⊙O的切线,
    ∴OC⊥CE,
    ∵CE⊥AB,
    ∴OC∥AB,
    ∴∠DAB=∠COD=60°,
    由(1)知,∠CBE+∠CAD=90°,
    ∴∠CBE=90°﹣∠CAD=60°=∠DAB,
    ∴BC∥OA,
    ∴四边形ABCO是平行四边形,
    ∵OA=OC,
    ∴▱ABCO是菱形;
    ②由①知,四边形ABCO是菱形,
    ∴OA=OC=AB=2,
    ∴AD=2OA=4,
    由①知,∠COD=60°,
    在Rt△ACD中,∠CAD=30°,
    ∴CD=2,AC=2,
    ∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD
    =S△ACD+S扇形COD
    =××2×2+
    =+π.
    五.相似形综合题(共1小题)
    7.(2023•江西)课本再现
    思考
    我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?
    可以发现并证明菱形的一个判定定理;
    对角线互相垂直的平行四边形是菱形.
    定理证明
    (1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.
    已知:在▱ABCD中,对角线BD⊥AC,垂足为O.
    求证:▱ABCD是菱形.

    知识应用
    (2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.
    ①求证:▱ABCD是菱形;
    ②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.
    【答案】(1)证明见解答过程;
    (2)①证明见解答过程;
    ②.
    【解答】(1)证明:∵四边形ABCD是平行四边形,
    ∴BO=DO,
    又∵BD⊥AC,垂足为O,
    ∴AC是BD的垂直平分线,
    ∴AB=AD,
    ∴▱ABCD是菱形.
    (2)①证明:∵▱ABCD中,对角线AC和BD相交于点O,AC=8,BD=6,
    ∴AO=CO=AC=4,DO=BD=3,
    又∵AD=5,
    ∴在三角形AOD中,AD2=AO2+DO2,
    ∴∠AOD=90°,
    即BD⊥AC,
    ∴▱ABCD是菱形;
    ②解:如图,设CD的中点为G,连接OG,

    ∴OG是△ACD的中位线,
    ∴OG=AD=,
    由①知:四边形ABCD是菱形,
    ∴∠ACD=∠ACB,
    又∵∠E=∠ACD,
    ∴∠E=∠ACB,
    又∵∠ACB=∠E+∠COE,
    ∴∠E=∠COE,
    ∴CE=CO=4,
    ∵OG是△ACD的中位线,
    ∴OG∥AD∥BE,
    ∴△OGF∽△ECF,
    ∴,
    又∵OG=,CE=4,
    ∴.
    六.解直角三角形的应用(共1小题)
    8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)

    (1)连接CD,求证:DC⊥BC;
    (2)求雕塑的高(即点E到直线BC的距离).
    (参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
    【答案】(1)证明过程见解答;
    (2)雕塑的高约为4.2m.
    【解答】(1)证明:∵AB=AC,
    ∴∠B=∠ACB,
    ∵AD=AC,
    ∴∠ADC=∠ACD,
    ∵∠B+∠ACB+∠ADC+∠ACD=180°,
    ∴2∠ACB+2∠ACD=180°,
    ∴∠ACB+∠ACD=90°,
    ∴∠BCD=90°,
    ∴DC⊥BC;
    (2)解:过点E作EF⊥BC,垂足为F,

    在Rt△DCB中,∠B=55°,BC=1.8m,
    ∴BD=≈=(m),
    ∵DE=2m,
    ∴BE=BD+DE=(m),
    在Rt△BEF中,EF=BE•sin55°≈×0.82≈4.2(m),
    ∴雕塑的高约为4.2m.

    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类:

    这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类,共18页。试卷主要包含了,与y轴的交点为C,,与y轴交于点C,,它的对称轴为直线l,问题提出等内容,欢迎下载使用。

    江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类:

    这是一份江苏省南通市2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类,共24页。试卷主要包含了的“﹣2级变换点”,是函数y=图象的“2阶方点”,两点,且与y轴相交于点M,已知等内容,欢迎下载使用。

    吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类(含答案):

    这是一份吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类(含答案),共30页。试卷主要包含了之间的关系如图所示,随之变化,,连接AP,AQ等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map