所属成套资源:全国分地区2021-2023三年中考数学真题分类汇编(按题型难易度分层分类)
四川省乐山市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开
这是一份四川省乐山市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共25页。试卷主要包含了计算,已知﹣=,求A、B的值,÷,其中x=,解二元一次方程组,的图象于P、Q两点等内容,欢迎下载使用。
四川省乐山市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.实数的运算(共1小题)
1.(2023•乐山)计算:|﹣2|+20230﹣.
二.分式的加减法(共1小题)
2.(2021•乐山)已知﹣=,求A、B的值.
三.分式的化简求值(共1小题)
3.(2022•乐山)先化简,再求值:(1﹣)÷,其中x=.
四.解二元一次方程组(共1小题)
4.(2023•乐山)解二元一次方程组:.
五.分式方程的应用(共1小题)
5.(2023•乐山)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?
六.解一元一次不等式(共1小题)
6.(2021•乐山)当x取何正整数值时,代数式与的值的差大于1?
七.解一元一次不等式组(共1小题)
7.(2022•乐山)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).
解:解不等式①,得 .
解不等式②,得 .
把不等式①和②的解集在数轴上表示出来:
所以原不等式组解集为 .
八.反比例函数与一次函数的交点问题(共2小题)
8.(2022•乐山)如图,已知直线l:y=x+4与反比例函数y=(x<0)的图象交于点A(﹣1,n),直线l′经过点A,且与l关于直线x=﹣1对称.
(1)求反比例函数的解析式;
(2)求图中阴影部分的面积.
9.(2021•乐山)如图,直线l分别交x轴、y轴于A、B两点,交反比例函数y=(k≠0)的图象于P、Q两点.若AB=2BP,且△AOB的面积为4.
(1)求k的值;
(2)当点P的横坐标为﹣1时,求△POQ的面积.
九.反比例函数的应用(共1小题)
10.(2021•乐山)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.
(1)求点A对应的指标值;
(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.
一十.抛物线与x轴的交点(共1小题)
11.(2021•乐山)已知关于x的一元二次方程x2+x﹣m=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.
一十一.全等三角形的判定(共1小题)
12.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
一十二.全等三角形的判定与性质(共2小题)
13.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.
14.(2021•乐山)如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.
一十三.矩形的判定与性质(共1小题)
15.(2023•乐山)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.
(1)求证:四边形ECFD是矩形;
(2)若CF=2,CE=4,求点C到EF的距离.
一十四.切线的判定与性质(共1小题)
16.(2021•乐山)如图,已知点C是以AB为直径的半圆上一点,D是AB延长线上一点,过点D作BD的垂线交AC的延长线于点E,连结CD,且CD=ED.
(1)求证:CD是⊙O的切线;
(2)若tan∠DCE=2,BD=1,求⊙O的半径.
一十五.相似形综合题(共1小题)
17.(2021•乐山)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.
(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE= ;
(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.
①在图2中补全图形;
②探究CD与BE的数量关系,并证明;
(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.
一十六.特殊角的三角函数值(共1小题)
18.(2022•乐山)sin30°+﹣2﹣1.
一十七.条形统计图(共1小题)
19.(2022•乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.趣味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;②整理数据并绘制统计图;③收集40名学生对四门课程的选择意向的相关数据;④结合统计图分析数据并得出结论.
(1)请对张老师的工作步骤正确排序 .
(2)以上步骤中抽取40名学生最合适的方式是 .
A.随机抽取八年级三班的40名学生
B.随机抽取八年级40名男生
C.随机抽取八年级40名女生
D.随机抽取八年级40名学生
(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图.假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.
一十八.列表法与树状图法(共1小题)
20.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.
家务类型
洗衣
拖地
煮饭
刷碗
人数(人)
10
12
10
m
根据上面图表信息,回答下列问题:
(1)m= ;
(2)在扇形统计图中,“拖地”所占的圆心角度数为 ;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
四川省乐山市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.实数的运算(共1小题)
1.(2023•乐山)计算:|﹣2|+20230﹣.
【答案】1.
【解答】解:原式=2+1﹣2
=1.
二.分式的加减法(共1小题)
2.(2021•乐山)已知﹣=,求A、B的值.
【答案】.
【解答】解:﹣===,
∴,
解得.
三.分式的化简求值(共1小题)
3.(2022•乐山)先化简,再求值:(1﹣)÷,其中x=.
【答案】x+1,+1.
【解答】解:(1﹣)÷
=
=
=x+1,
当x=时,原式=+1.
四.解二元一次方程组(共1小题)
4.(2023•乐山)解二元一次方程组:.
【答案】.
【解答】解:,
①×2得:2x﹣2y=2③,
②+③得:5x=10,
解得:x=2,
把x=2代入①中得:2﹣y=1,
解得:y=1,
∴原方程组的解为:.
五.分式方程的应用(共1小题)
5.(2023•乐山)为了践行习近平总书记提出的“绿水青山就是金山银山”的发展理念,某地计划在规定时间内种植梨树6000棵.开始种植时,由于志愿者的加入,实际每天种植梨树的数量比原计划增加了20%,结果提前2天完成任务.问原计划每天种植梨树多少棵?
【答案】原计划每天种植梨树500棵.
【解答】解:设原计划每天种植梨树x棵,则实际每天种植梨树(1+20%)x棵,
根据题意得:﹣=2,
解得:x=500,
经检验,x=500是所列方程的解,且符合题意.
答:原计划每天种植梨树500棵.
六.解一元一次不等式(共1小题)
6.(2021•乐山)当x取何正整数值时,代数式与的值的差大于1?
【答案】见试题解答内容
【解答】解:依题意得:﹣>1,
去分母,得:3(x+3)﹣2(2x﹣1)>6,
去括号,得:3x+9﹣4x+2>6,
移项,得:3x﹣4x>6﹣2﹣9,
合并同类项,得:﹣x>﹣5,
系数化为1,得:x<5.
∵x为正整数,
∴x取1,2,3,4.
七.解一元一次不等式组(共1小题)
7.(2022•乐山)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).
解:解不等式①,得 x>﹣2 .
解不等式②,得 x≤3 .
把不等式①和②的解集在数轴上表示出来:
所以原不等式组解集为 ﹣2<x≤3 .
【答案】x>﹣2,x≤3,﹣2<x≤3.
【解答】解:解不等式①,得x>﹣2.
解不等式②,得x≤3.
把不等式①和②的解集在数轴上表示出来:
所以原不等式组解集为﹣2<x≤3,
故答案为:x>﹣2,x≤3,﹣2<x≤3.
八.反比例函数与一次函数的交点问题(共2小题)
8.(2022•乐山)如图,已知直线l:y=x+4与反比例函数y=(x<0)的图象交于点A(﹣1,n),直线l′经过点A,且与l关于直线x=﹣1对称.
(1)求反比例函数的解析式;
(2)求图中阴影部分的面积.
【答案】(1)y=﹣;
(2)7.
【解答】解:(1)∵点A(﹣1,n)在直线l:y=x+4上,
∴n=﹣1+4=3,
∴A(﹣1,3),
∵点A在反比例函数y=(x<0)的图象上,
∴k=﹣3,
∴反比例函数的解析式为y=﹣;
(2)易知直线l:y=x+4与x、y轴的交点分别为B(﹣4,0),C(0,4),
∵直线l′经过点A,且与l关于直线x=﹣1对称,
∴直线l′与x轴的交点为E(2,0),
设l′:y=kx+b,则,
解得:,
∴l′:y=﹣x+2,
∴l′与y轴的交点为D(0,2),
∴阴影部分的面积=△BOC的面积﹣△ACD的面积=×4×4﹣×2×1=7.
9.(2021•乐山)如图,直线l分别交x轴、y轴于A、B两点,交反比例函数y=(k≠0)的图象于P、Q两点.若AB=2BP,且△AOB的面积为4.
(1)求k的值;
(2)当点P的横坐标为﹣1时,求△POQ的面积.
【答案】(1)k=﹣6;
(2)8.
【解答】解:(1)∵AB=2BP,且△AOB的面积为4,
∴△POB的面积为2,
作PM⊥y轴于M,
∴PM∥OA,
∴△PBM∽△ABO,
∴=()2,即,
∴△PBM的面积为1,
∴S△POM=1+2=3,
∵S△POM=|k|,
∴|k|=6,
∵k<0,
∴k=﹣6;
(2)∵点P的横坐标为﹣1,
∴PM=1,
∵△PBM∽△ABO,
∴=,即=,
∴OA=2,
∴A(2,0),
把x=﹣1代入y=﹣得,y=6,
∴P(﹣1,6),
设直线AB为y=mx+n,
把P、A的坐标代入得,解得,
∴直线AB为y=﹣2x+4,
解得或,
∴Q(3,﹣2),
∴S△POQ=S△POA+S△QOA=×2×6+×2=8.
九.反比例函数的应用(共1小题)
10.(2021•乐山)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.
(1)求点A对应的指标值;
(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.
【答案】见试题解答内容
【解答】解:(1)设当20≤x≤45时,反比例函数的解析式为y=,将C(20,45)代入得:
45=,解得k=900,
∴反比例函数的解析式为y=,
当x=45时,y==20,
∴D(45,20),
∴A(0,20),即A对应的指标值为20;
(2)设当0≤x<10时,AB的解析式为y=mx+n,将A(0,20)、B(10,45)代入得:
,解得,
∴AB的解析式为y=x+20,
当y≥36时,x+20≥36,解得x≥,
由(1)得反比例函数的解析式为y=,
当y≥36时,≥36,解得x≤25,
∴≤x≤25时,注意力指标都不低于36,
而25﹣=>17,
∴张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36.
一十.抛物线与x轴的交点(共1小题)
11.(2021•乐山)已知关于x的一元二次方程x2+x﹣m=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.
【答案】(1)m>﹣;
(2)x1=1,x2=﹣2.
【解答】解:(1)∵一元二次方程x2+x﹣m=0有两个不相等的实数根,
∴Δ>0,即1+4m>0,
∴m>﹣,
∴m的取值范围为m>﹣;
(2)二次函数y=x2+x﹣m图象的对称轴为直线x=﹣,
∴抛物线与x轴两个交点关于直线x=﹣对称,
由图可知抛物线与x轴一个交点为(1,0),
∴另一个交点为(﹣2,0),
∴一元二次方程x2+x﹣m=0的解为x1=1,x2=﹣2.
一十一.全等三角形的判定(共1小题)
12.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.
【答案】见解答过程.
【解答】证明:∵点B为线段AC的中点,
∴AB=BC,
∵AD∥BE,
∴∠A=∠EBC,
∵BD∥CE,
∴∠C=∠DBA,
在△ABD与△BCE中,
,
∴△ABD≌△BCE.(ASA).
一十二.全等三角形的判定与性质(共2小题)
13.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.
【答案】见解答过程.
【解答】证明:∵AC∥BD,
∴∠A=∠B,∠C=∠D,
在△AOC和△BOD中,
,
∴△AOC≌△BOD(AAS),
∴AC=BD.
14.(2021•乐山)如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.
【答案】详见解答.
【解答】证明:在△AOB与△COD中,
,
∴△AOB≌△DOC(AAS),
∴OB=OC,
∴∠OBC=∠OCB.
一十三.矩形的判定与性质(共1小题)
15.(2023•乐山)如图,在Rt△ABC中,∠C=90°,点D为AB边上任意一点(不与点A、B重合),过点D作DE∥BC,DF∥AC,分别交AC、BC于点E、F,连结EF.
(1)求证:四边形ECFD是矩形;
(2)若CF=2,CE=4,求点C到EF的距离.
【答案】点C到EF的距离为.
【解答】(1)证明:∵FD∥CA,BC∥DE,
∴四边形ECFD为平行四边形,
又∵∠C=90°,
∴四边形ECFD为矩形;
(2)解:过点C作CH⊥EF于H,
在Rt△ECF中,CF=2,CE=4,
∴EF===2,
∵S△ECF=×CF•CE=×EF•CH,
∴CH==,
∴点C到EF的距离为.
一十四.切线的判定与性质(共1小题)
16.(2021•乐山)如图,已知点C是以AB为直径的半圆上一点,D是AB延长线上一点,过点D作BD的垂线交AC的延长线于点E,连结CD,且CD=ED.
(1)求证:CD是⊙O的切线;
(2)若tan∠DCE=2,BD=1,求⊙O的半径.
【答案】(1)证明见解答过程;
(2).
【解答】解:(1)连接OC,如图:
∵CD=DE,OC=OA,
∴∠DCE=∠E,∠OCA=∠OAC,
∵ED⊥AD,
∴∠ADE=90°,∠OAC+∠E=90°,
∴∠OCA+∠DCE=90°,
∴∠DCO=90°,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)连接BC,如图:
∵CD=DE,
∴∠DCE=∠E,
∵tan∠DCE=2,
∴tanE=2,
∵ED⊥AD,
Rt△EDA中,=2,
设⊙O的半径为x,则OA=OB=x,
∵BD=1,
∴AD=2x+1,
∴=2,
∴ED=x+=CD,
∵CD是⊙O的切线,
∴CD2=BD•AD,
∴(x+)2=1×(2x+1),解得x=或x=﹣(舍去),
∴⊙O的半径为.
一十五.相似形综合题(共1小题)
17.(2021•乐山)在等腰△ABC中,AB=AC,点D是BC边上一点(不与点B、C重合),连结AD.
(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连结AE,DE,则∠BDE= 30° ;
(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连结BE.
①在图2中补全图形;
②探究CD与BE的数量关系,并证明;
(3)如图3,若=k,且∠ADE=∠C.试探究BE、BD、AC之间满足的数量关系,并证明.
【答案】(1)30°;
(2)①补全图形见解答过程;
②CD=BE,理由见解答过程;
(3)AC=k(BD+BE),证明见解答过程.
【解答】解:(1)∵AB=AC,∠C=60°,
∴△ABC是等边三角形,
∴∠B=60°,
∵点D关于直线AB的对称点为点E,
∴DE⊥AB,
∴∠BDE=180°﹣60°﹣90°=30°;
故答案为:30°;
(2)①补全图形如下:
②CD=BE,证明如下:
∵AB=AC,∠C=60°,
∴△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵线段AD绕点A顺时针旋转60°得到线段AE,
∴AD=AE,∠EAD=60°,
∴∠BAC=∠EAD=60°,
∴∠BAC﹣∠BAD=∠EAD﹣∠BAD,即∠EAB=∠DAC,
在△EAB和△DAC中,
,
∴△EAB≌△DAC(SAS),
∴CD=BE;
(3)AC=k(BD+BE),证明如下:
连接AE,如图:
∵AB=AC,
∴∠C=∠ABC,
∵∠ADE=∠C,
∴∠ABC=∠ADE,
∵,
∴△ABC∽△ADE,
∴∠DAE=∠BAC,=,
∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠DAC,
∵AB=AC,
∴AE=AD,
在△EAB和△DAC中,
,
∴△EAB≌△DAC(SAS),
∴CD=BE,
∴BC=BD+CD=BD+BE,
而==k,
∴=k,即AC=k(BD+BE).
一十六.特殊角的三角函数值(共1小题)
18.(2022•乐山)sin30°+﹣2﹣1.
【答案】3.
【解答】解:原式=+3﹣
=3.
一十七.条形统计图(共1小题)
19.(2022•乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.趣味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;②整理数据并绘制统计图;③收集40名学生对四门课程的选择意向的相关数据;④结合统计图分析数据并得出结论.
(1)请对张老师的工作步骤正确排序 ①③②④ .
(2)以上步骤中抽取40名学生最合适的方式是 D .
A.随机抽取八年级三班的40名学生
B.随机抽取八年级40名男生
C.随机抽取八年级40名女生
D.随机抽取八年级40名学生
(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图.假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.
【答案】(1)①③②④;
(2)D;
(3)5.
【解答】解:(1)根据数据的收集与整理的具体步骤可判断顺序为:①③②④,
故答案为:①③②④;
(2)根据抽样调查的特点易判断出:D,
故答案为:D;
(3)由条形统计图可估计,八年级学生中选择趣味数学的人数为:
×1000=200(人),
200÷40=5,
答:至少应该开设5个班.
一十八.列表法与树状图法(共1小题)
20.(2023•乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与.经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”,班主任将以上信息绘制成了统计图表,如图所示.
家务类型
洗衣
拖地
煮饭
刷碗
人数(人)
10
12
10
m
根据上面图表信息,回答下列问题:
(1)m= 8 ;
(2)在扇形统计图中,“拖地”所占的圆心角度数为 108° ;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
【答案】(1)8;
(2)108°;
(3).
【解答】解:(1)因为被调查的总人数为10÷25%=40(人),
所以m=40﹣(10+12+10)=8,
故答案为:8;
(2)在扇形统计图中,“拖地”所占的圆心角度数为360°×=108°,
故答案为:108°;
(3)列表如下:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表知,共有12种等可能结果,其中所选同学中有男生的有10种结果,
所以所选同学中有男生的概率为=.
相关试卷
这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共22页。试卷主要包含了计算,0;,0+2﹣1;,,且经过小正方形的顶点B,是水柱距地面的高度等内容,欢迎下载使用。
这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。
这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了计算,,其中x=+1,÷,其中a=,解方程,如图,DB是▱ABCD的对角线等内容,欢迎下载使用。