![江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/14557859/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/14557859/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/14557859/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题(含解析)
展开
这是一份江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题(含解析),共42页。试卷主要包含了,其中x=﹣;,计算,,与x轴交于点B,之间的关系如图所示,三点,对称轴是直线x=1,是函数y=图象的“2阶方点”等内容,欢迎下载使用。
江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题
一.整式的混合运算—化简求值(共1小题)
1.(2021•南通)(1)化简求值:(2x﹣1)2+(x+6)(x﹣2),其中x=﹣;
(2)解方程﹣=0.
二.分式的混合运算(共2小题)
2.(2022•南通)(1)计算:;
(2)解不等式组:.
3.(2020•南通)计算:
(1)(2m+3n)2﹣(2m+n)(2m﹣n);
(2)÷(x+).
三.两条直线相交或平行问题(共1小题)
4.(2020•南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
四.一次函数的应用(共2小题)
5.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.
(1)写出图中点B表示的实际意义;
(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.
6.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
例如,一次购物的商品原价为500元,
去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);
去B超市的购物金额为:100+(500﹣100)×0.8=420(元).
(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
五.抛物线与x轴的交点(共1小题)
7.(2020•南通)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.
(1)求抛物线的解析式;
(2)若n<﹣5,试比较y1与y2的大小;
(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.
六.二次函数综合题(共2小题)
8.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
9.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
七.四边形综合题(共3小题)
10.(2022•南通)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.
11.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
12.(2020•南通)【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;
(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.
八.圆周角定理(共1小题)
13.(2022•南通)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.
(1)求直径BD的长;
(2)若BE=5,计算图中阴影部分的面积.
九.切线的性质(共1小题)
14.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.
(1)求∠B的度数;
(2)若AB=2,求的长.
一十.作图—基本作图(共1小题)
15.(2020•南通)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.
(2)如图②,A为⊙O上一点,按以下步骤作图:
①连接OA;
②以点A为圆心,AO长为半径作弧,交⊙O于点B;
③在射线OB上截取BC=OA;
④连接AC.
若AC=3,求⊙O的半径.
一十一.作图—复杂作图(共1小题)
16.(2022•南通)【阅读材料】
老师的问题:
已知:如图,AE∥BF.
求作:菱形ABCD,使点C,D分别在BF,AE上.
小明的作法:
(1)以A为圆心,AB长为半径画弧,交AE于点D;
(2)以B为圆心,AB长为半径画弧,交BF于点C;
(3)连接CD.
四边形ABCD就是所求作的菱形.
【解答问题】
请根据材料中的信息,证明四边形ABCD是菱形.
一十二.翻折变换(折叠问题)(共1小题)
17.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
(1)如图①,若点P恰好在边BC上,连接AP,求的值;
(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.
一十三.相似三角形的应用(共1小题)
18.(2021•南通)如图,利用标杆DE测量楼高,点A,D,B在同一直线上,DE⊥AC,BC⊥AC,垂足分别为E,C.若测得AE=1m,DE=1.5m,CE=5m,楼高BC是多少?
一十四.条形统计图(共1小题)
19.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.
第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.
两个小组的调查结果如图的图表所示:
第二小组统计表
等级
人数
百分比
A
17
18.9%
B
38
42.2%
C
28
31.1%
D
7
7.8%
合计
90
100%
若该校共有1000名学生,试根据以上信息解答下列问题:
(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 人;
(2)对这两个小组的调查统计方法各提一条改进建议.
一十五.众数(共1小题)
20.(2022•南通)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:
A,B两个县区的统计表
平均数
众数
中位数
A县区
3.85
3
3
B县区
3.85
4
2.5
(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为 名;
(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.
一十六.方差(共1小题)
21.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.
甲、乙两种西瓜得分表
序号
1
2
3
4
5
6
7
甲种西瓜(分)
75
85
86
88
90
96
96
乙种西瓜(分)
80
83
87
90
90
92
94
甲、乙两种西瓜得分统计表
平均数
中位数
众数
甲种西瓜
88
a
96
乙种西瓜
88
90
b
(1)a= ,b= ;
(2)从方差的角度看, 种西瓜的得分较稳定(填“甲”或“乙”);
(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.
一十七.列表法与树状图法(共3小题)
22.(2022•南通)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.
(1)从袋子中随机摸出一个球,摸到蓝球的概率是 ;
(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.
23.(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.
(1)随机摸取一个小球的标号是奇数,该事件的概率为 ;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.
24.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.
请用所学概率知识解决下列问题:
(1)写出这三辆车按先后顺序出发的所有可能结果;
(2)两人中,谁乘坐到甲车的可能性大?请说明理由.
江苏省南通市三年(2020-2022)中考数学真题分类汇编-解答题
参考答案与试题解析
一.整式的混合运算—化简求值(共1小题)
1.(2021•南通)(1)化简求值:(2x﹣1)2+(x+6)(x﹣2),其中x=﹣;
(2)解方程﹣=0.
【解答】解:(1)原式=4x2﹣4x+1+x2+4x﹣12
=5x2﹣11,
当x=﹣时,
原式=5×3﹣11
=15﹣11
=4.
(2)﹣=0,
=,
2x=3x﹣9,
x=9,
检验:将x=9代入x(x﹣3)≠0,
∴x=9是原方程的解.
二.分式的混合运算(共2小题)
2.(2022•南通)(1)计算:;
(2)解不等式组:.
【解答】解:(1)原式=
=
=
=1;
(2)不等式2x﹣1>x+1的解集为:x>2,
不等式4x﹣1≥x+8的解集为:x≥3,
它们的解集在数轴上表示为:
∴不等式组的解集为:x≥3.
3.(2020•南通)计算:
(1)(2m+3n)2﹣(2m+n)(2m﹣n);
(2)÷(x+).
【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)
=4m2+12mn+9n2﹣4m2+n2
=12mn+10n2;
(2)原式=÷(+)
=÷
=•
=.
三.两条直线相交或平行问题(共1小题)
4.(2020•南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
【解答】解:(1)把x=1代入y=x+3得y=4,
∴C(1,4),
设直线l2的解析式为y=kx+b,
∴,解得,
∴直线l2的解析式为y=﹣2x+6;
(2)在y=x+3中,令y=0,得x=﹣3,
∴B(﹣3,0),
∴AB=3﹣(﹣3)=6,
设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),
MN=|a+3﹣(﹣2a+6)|=AB=6,
解得a=3或a=﹣1,
∴M(3,6)或(﹣1,2).
四.一次函数的应用(共2小题)
5.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.
(1)写出图中点B表示的实际意义;
(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.
【解答】解:(1)图中点B表示的实际意义为当销量为60kb时,甲、乙两种苹果的销售额均为1200元;
(2)设甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=kx(k≠0),
把(60,1200)代入解析式得:1200=60k,
解得k=20,
∴甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=20x(0≤x≤120);
当0≤x≤30时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=k′x(k′≠0),
把(30,750)代入解析式得:750=30k′,
解得:k′=25,
∴y乙=25x;
当30≤x≤120时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=mx+n(m≠0),
则,
解得:,
∴y乙=15x+300,
综上,乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=;
(3)①当0≤a≤30时,
根据题意得:(20﹣8)a+(25﹣12)a=1500,
解得:a=60>30,不合题意;
②当30<a≤120时,
根据题意得:(20﹣8)a+(15﹣12)a+300=1500,
解得:a=80,
综上,a的值为80.
6.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
例如,一次购物的商品原价为500元,
去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);
去B超市的购物金额为:100+(500﹣100)×0.8=420(元).
(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
【解答】解:(1)由题意可得,当x≤300时,yA=0.9x;当x>300时,yA=0.9×300+0.7(x﹣300)=0.7x+60,
故;
当x>100时,yB=100+0.8(x﹣100)=0.8x+20;
;
(2)由题意,得0.9x>0.8x+20,解得x>200,
∴200<x≤300时,到B超市更省钱;
0.7x+60>0.8x+20,解得x<400,
∴300<x<400,到B超市更省钱;
0.7x+60=0.8x+20,解得x=400,
∴当x=400时,两家超市一样;
0.7x+60<0.8x+20,解得x>400,
∴当x>400时,到A超市更省钱;
综上所述,当200<x<400到B超市更省钱;当x=400时,两家超市一样;当x>400时,到A超市更省钱.
五.抛物线与x轴的交点(共1小题)
7.(2020•南通)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.
(1)求抛物线的解析式;
(2)若n<﹣5,试比较y1与y2的大小;
(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.
【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),
∴0=4a+2b+c①,
∵对称轴是直线x=1,
∴﹣=1②,
∵关于x的方程ax2+bx+c=x有两个相等的实数根,
∴Δ=(b﹣1)2﹣4ac=0③,
由①②③可得:,
∴抛物线的解析式为y=﹣x2+x;
(2)∵n<﹣5,
∴3n﹣4<﹣19,5n+6<﹣19
∴点B,点C在对称轴直线x=1的左侧,
∵抛物线y=﹣x2+x,
∴﹣<0,即y随x的增大而增大,
∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,
∴3n﹣4>5n+6,
∴y1>y2;
方法二‘
∵B(3n﹣4,y1),C(5n+6,y2)在抛物线y=﹣x2+x上,
∴y1=﹣(3n﹣4)2+(3n﹣4)=﹣n2+15n﹣12,
y2=﹣(5n+6)2+(5n+6)=﹣n2﹣25n﹣12,
∴y1﹣y2=8n(n+5),
∵n<﹣5,
∴8n<0,n+5<0,
∴y1﹣y2=8n(n+5)>0,
∴y1>y2.
(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,
由题意可得,
∴0<n<,
若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得:,
∴不等式组无解,
综上所述:0<n<.
六.二次函数综合题(共2小题)
8.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.
(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有 ②③ (填序号);
(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;
(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.
【解答】解:(1)①(﹣2,﹣)到两坐标轴的距离分别是2>1,<1,
∴(﹣2,﹣)不是反比例函数y=图象的“1阶方点”;
②(﹣1,﹣1)到两坐标轴的距离分别是1≤1,1≤1,
∴(﹣1,﹣1)是反比例函数y=图象的“1阶方点”;
③(1,1)到两坐标轴的距离分别是1≤1,1≤1,
∴(1,1)是反比例函数y=图象的“1阶方点”;
故答案为:②③;
(2)∵y=ax﹣3a+1=a(x﹣3)+1,
∴函数经过定点(3,1),
在以O为中心,边长为4的正方形ABCD中,当直线与正方形区域只有唯一交点时,图象的“2阶方点”有且只有一个,
由图可知,C(2,﹣2),D(2,2),
∵一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,
当直线经过点C时,a=﹣1,此时图象的“2阶方点”有且只有一个,
当直线经过点D时,a=3,此时图象的“2阶方点”有且只有一个,
综上所述:a的值为3或a=﹣1;
(3)在以O为中心,边长为2n的正方形ABCD中,当抛物线与正方形区域有公共部分时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,
如图2,当n>0时,A(n,n),B(n,﹣n),C(﹣n,﹣n),D(﹣n,n),
当抛物线经过点D时,n=﹣1(舍)或n=;
当抛物线经过点B时,n=1;
∴≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象有“n阶方点”;
综上所述:≤n≤1时,二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在.
9.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
【解答】解:(1)在y=x+2中,令x=x+2,得0=2不成立,
∴函数y=x+2的图象上不存在“等值点”;
在y=x2﹣x中,令x2﹣x=x,
解得:x1=0,x2=2,
∴函数y=x2﹣x的图象上有两个“等值点”(0,0)或(2,2);
(2)在函数y=(x>0)中,令x=,
解得:x=,
∴A(,),
在函数y=﹣x+b中,令x=﹣x+b,
解得:x=b,
∴B(b,b),
∵BC⊥x轴,
∴C(b,0),
∴BC=|b|,
∵△ABC的面积为3,
∴×|b|×|﹣b|=3,
当b<0时,b2﹣2﹣24=0,
解得b=﹣2,
当0≤b<2时,b2﹣2+24=0,
∵Δ=(﹣2)2﹣4×1×24=﹣84<0,
∴方程b2﹣2+24=0没有实数根,
当b≥2时,b2﹣2﹣24=0,
解得:b=4,
综上所述,b的值为﹣2或4;
(3)令x=x2﹣2,
解得:x1=﹣1,x2=2,
∴函数y=x2﹣2的图象上有两个“等值点”(﹣1,﹣1)或(2,2),
①当m<﹣1时,W1,W2两部分组成的图象上必有2个“等值点”(﹣1,﹣1)或(2,2),
W1:y=x2﹣2(x≥m),
W2:y=(x﹣2m)2﹣2(x<m),
令x=(x﹣2m)2﹣2,
整理得:x2﹣(4m+1)x+4m2﹣2=0,
∵W2的图象上不存在“等值点”,
∴Δ<0,
∴(4m+1)2﹣4(4m2﹣2)<0,
∴m<﹣,
②当m=﹣1时,有3个“等值点”(﹣2,﹣2)、(﹣1,﹣1)、(2,2),
③当﹣1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,
④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),
⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,
综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<﹣或﹣1<m<2.
七.四边形综合题(共3小题)
10.(2022•南通)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.
【解答】(1)证明:如图1中,作FM⊥AC,垂足为M,
∵四边形ABCD是矩形,
∴∠B=90°,
∵FM⊥AC,
∴∠B=∠AMF=90°,
∵∠BAC=∠EAF,
∴∠BAE=∠MAF,
在△ABE和△AMF中,
,
∴△ABE≌△AMF(AAS),
∴AB=AM;
(2)解:当点E在BC上,在Rt△ABE中,AB=4,AE=3,
∴BE===,
∵△ABE≌△AMF,
∴AB=AM=4,FM=BE=,
在Rt△ABC中,AB=4,BC=3,
∴AC===5,
∴CM=AC﹣AM=5﹣4=1,
∵∠CMF=90°,
∴CF===.
当点E在CD上时,可得CF=.
综上所述,CF的值为或;
(3)解:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.
∵△ABE≌△AMF,
∴AM=AB=4,
∵∠AMF=90°,
∴点F在射线FM上运动,当点F与K重合时,DH的值最小,
∵∠CMJ=∠ADC=90°,∠MCJ=∠ACD,
∴△CMJ∽△CDA,
∴==,
∴==,
∴MJ=,CJ=,
∴DJ=CD﹣CJ=4﹣=,
∵∠CMJ=∠DHJ=90°,∠CJM=∠DJH,
∴△CMJ∽△DHJ,
∴=,
∴=,
∴DH=,
∴DF的最小值为.
当点E在线段CD上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠BAC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.
∵∠EAF=∠BAC,∠DAR=∠BAC,
∴∠DAE=∠RAF,
∵AE=AF,AD=AR,
∴△ADE≌△ARF(SAS),
∴∠ADE=∠ARF=90°,
∴点F在直线RF上运动,当点D与K重合时,DF的值最小,
∵DQ⊥AR,DK⊥RF,
∴∠R=∠DQR=∠DKR=90°,
∴四边形DKRQ是矩形,
∴DK=QR,
∴AQ=AD•cos∠BAC=3×=,
∵AR=AD=3,
∴DK=QR=AR﹣AQ=,
∴DF的最小值为,
∵<,
∴DF的最小值为.
11.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
【解答】解:(1)如图1,连接BF,
∵点A关于直线BE的对称点为点F,
∴AB=BF,BE⊥AF,
∴∠ABE=∠EBF=α,
∴∠CBF=90°﹣2α,
∵四边形ABCD是正方形,
∴AB=BC,
∴BF=BC,
∴∠BCF==45°+α;
(2)DG∥CF,
理由如下:如图2,连接AC,
∵四边形ABCD是正方形,
∴∠ACD=45°,∠ADC=90°,
∵CG⊥AF,
∴∠CGA=∠ADC=90°,
∴点A,点D,点G,点C四点共圆,
∴∠AGD=∠ACD=45°,
∵AB=BF,∠ABF=2α,
∴∠AFB==90°﹣α,
∴∠AFC=135°,
∴∠CFG=45°=∠DGA,
∴DG∥CF;
(3)∵BE>AB,
∴BH>BF,
∴BH≠BF;
如图3,当BH=FH时,过点H作HN⊥BF于N,
∵将△ABE绕点B顺时针旋转90°得到△CBH,
∴△ABE≌△CBH,∠EBH=90°=∠ABC,
∴AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,
∴∠HBF=90°﹣α,
∵BH=FH,HN⊥BF,
∴BN=NF=BF=AB,∠BNH=90°=∠BAE,
∴∠BHN=α,
∴∠ABE=∠BHN,
∴△ABE≌△NHB(ASA),
∴BN=AE=AB,
∴BE==AE,
∴sinα==,
当BF=FH时,
∴∠FBH=∠FHB=90°﹣α,
∴∠BFH=2α=∠ABF,
∴AB∥FH,
即点F与点C重合,则点E与点D重合,
∵点E在边AD上(不与端点A,D重合),
∴BF=FH不成立,
综上所述:sinα的值为.
12.(2020•南通)【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;
(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.
【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.
∵AC=AB,
∴BE=CE=3,
在Rt△AEB中,AE===4,
∵CF⊥AD,
∴∠D+∠FCD=90°,
∵∠B+∠D=90°,
∴∠B=∠DCF,
∵∠AEB=∠CFD=90°,
∴△AEB∽△DFC,
∴=,
∴=,
∴CF=,
∴sin∠CAD===.
(2)如图②中,结论:四边形ABCD是对余四边形.
理由:过点D作DM⊥DC,使得DM=DC,连接CM.
∵四边形ABCD中,AD=BD,AD⊥BD,
∴∠DAB=∠DBA=45°,
∵∠DCM=∠DMC=45°,
∴∠CDM=∠ADB=90°,
∴∠ADC=∠BDM,
∵AD=DB,CD=DM,
∴△ADC≌△BDM(SAS),
∴AC=BM,
∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,
∴CM2+CB2=BM2,
∴∠BCM=90°,
∴∠DCB=45°,
∴∠DAB+∠DCB=90°,
∴四边形ABCD是对余四边形.
(3)如图③中,过点D作DH⊥x轴于H.
∵A(﹣1,0),B(3,0),C(1,2),
∴OA=1,OB=3,AB=4,AC=BC=2,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∴∠CBA=∠CAB=45°,
∵四边形ABCD是对余四边形,
∴∠ADC+∠ABC=90°,
∴∠ADC=45°,
∵∠AEC=90°+∠ABC=135°,
∴∠ADC+∠AEC=180°,
∴A,D,C,E四点共圆,
∴∠ACE=∠ADE,
∵∠CAE+∠ACE=∠CAE+∠EAB=45°,
∴∠EAB=∠ACE,
∴∠EAB=∠ADB,
∵∠ABE=∠DBA,
∴△ABE∽△DBA,
∴=,
∴=,
∴u=,
设D(x,t),
∵四边形ABCD是对余四边形,
可得BD2=2CD2+AD2,
∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,
整理得(x+1)2=4t﹣t2,
在Rt△ADH中,AD===2,
∴u==(0<t<4),
即u=(0<t<4).
八.圆周角定理(共1小题)
13.(2022•南通)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.
(1)求直径BD的长;
(2)若BE=5,计算图中阴影部分的面积.
【解答】解:(1)∵BD为⊙O的直径,
∴∠BCD=∠DCE=90°,
∵AC平分∠BAD,
∴∠BAC=∠DAC,
∴BC=DC=2,
∴BD=2×=4;
(2)∵BE=5,
∴CE=3,
∵BC=DC,
∴S阴影=S△CDE=×2×=6.
九.切线的性质(共1小题)
14.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.
(1)求∠B的度数;
(2)若AB=2,求的长.
【解答】解:(1)连接OC,如图,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AE⊥CD,
∴OC∥AE,
∴∠CAD=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠CAD=∠OAC=35°,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠OAC+∠B=90°,
∴∠B=90°﹣∠OAC=90°﹣35°=55°;
(2)连接OE,
∵⊙O的直径AB=2,
∴OA=1,
∵=,
∴∠COE=2∠CAE=2×35°=70°,
∴的长为:=.
一十.作图—基本作图(共1小题)
15.(2020•南通)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.
(2)如图②,A为⊙O上一点,按以下步骤作图:
①连接OA;
②以点A为圆心,AO长为半径作弧,交⊙O于点B;
③在射线OB上截取BC=OA;
④连接AC.
若AC=3,求⊙O的半径.
【解答】(1)证明:在△ABE和△ACD中
,
∴△ABE≌△ACD(AAS),
∴AB=AC;
(2)解:连接AB,如图②,
由作法得OA=OB=AB=BC,
∴△OAB为等边三角形,
∴∠OAB=∠OBA=60°,
∵AB=BC,
∴∠C=∠BAC,
∵∠OBA=∠C+∠BAC,
∴∠C=∠BAC=30°
∴∠OAC=90°,
在Rt△OAC中,OA=AC=×3=.
即⊙O的半径为.
一十一.作图—复杂作图(共1小题)
16.(2022•南通)【阅读材料】
老师的问题:
已知:如图,AE∥BF.
求作:菱形ABCD,使点C,D分别在BF,AE上.
小明的作法:
(1)以A为圆心,AB长为半径画弧,交AE于点D;
(2)以B为圆心,AB长为半径画弧,交BF于点C;
(3)连接CD.
四边形ABCD就是所求作的菱形.
【解答问题】
请根据材料中的信息,证明四边形ABCD是菱形.
【解答】证明:由作图可知AD=AB=BC,
∵AE∥BF,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形.
一十二.翻折变换(折叠问题)(共1小题)
17.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
(1)如图①,若点P恰好在边BC上,连接AP,求的值;
(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.
【解答】解:(1)如图①中,取DE的中点M,连接PM.
∵四边形ABCD是矩形,
∴∠BAD=∠C=90°,
由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,
在Rt△EPD中,∵EM=MD,
∴PM=EM=DM,
∴∠3=∠MPD,
∴∠1=∠3+∠MPD=2∠3,
∵∠ADP=2∠3,
∴∠1=∠ADP,
∵AD∥BC,
∴∠ADP=∠DPC,
∴∠1=∠DPC,
∵∠MOP=∠C=90°,
∴△POM∽△DCP,
∴===,
∴==.
解法二:证明△ABP和△DAE相似,==.
(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x
∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,
∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,
∴∠EPG=∠PDH,
∴△EGP∽△PHD,
∴====,
∴PH=3EG=3x,DH=AG=4+x,
在Rt△PHD中,∵PH2+DH2=PD2,
∴(3x)2+(4+x)2=122,
解得x=(负值已经舍弃),
∴BG=4﹣=,
在Rt△EGP中,GP==,
∵GH∥BC,
∴△EGP∽△EBF,
∴=,
∴=,
∴BF=3.
一十三.相似三角形的应用(共1小题)
18.(2021•南通)如图,利用标杆DE测量楼高,点A,D,B在同一直线上,DE⊥AC,BC⊥AC,垂足分别为E,C.若测得AE=1m,DE=1.5m,CE=5m,楼高BC是多少?
【解答】解:∵DE⊥AC,BC⊥AC,
∴DE∥BC,
∴△ADE∽△ABC,
∴=,
∴=,
∴BC=9(m),
答:楼高BC是9m.
一十四.条形统计图(共1小题)
19.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.
第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.
两个小组的调查结果如图的图表所示:
第二小组统计表
等级
人数
百分比
A
17
18.9%
B
38
42.2%
C
28
31.1%
D
7
7.8%
合计
90
100%
若该校共有1000名学生,试根据以上信息解答下列问题:
(1)第 二 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 922 人;
(2)对这两个小组的调查统计方法各提一条改进建议.
【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;
1000×(1﹣7.8%)=1000×0.922=922(人),
故答案为:二,922;
(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;
对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.
一十五.众数(共1小题)
20.(2022•南通)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:
A,B两个县区的统计表
平均数
众数
中位数
A县区
3.85
3
3
B县区
3.85
4
2.5
(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为 3750 名;
(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.
【解答】解:(1)5000×(30%+25%+15%+5%)=3750(名).
故答案为:3750.
(2)因为A,B两个县区的平均数一样,从众数来看B县区好,但从中位数来看A县区好.
一十六.方差(共1小题)
21.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.
甲、乙两种西瓜得分表
序号
1
2
3
4
5
6
7
甲种西瓜(分)
75
85
86
88
90
96
96
乙种西瓜(分)
80
83
87
90
90
92
94
甲、乙两种西瓜得分统计表
平均数
中位数
众数
甲种西瓜
88
a
96
乙种西瓜
88
90
b
(1)a= 88 ,b= 90 ;
(2)从方差的角度看, 乙 种西瓜的得分较稳定(填“甲”或“乙”);
(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.
【解答】解:(1)将甲种西瓜的得分从小到大排列,处在中间位置的一个数是88,因此中位数是88,即a=88,
乙种西瓜的得分出现次数最多的是90分,所以众数是90,即b=90,
故答案为:88,90;
(2)由甲、乙两种西瓜得分的大小波动情况,直观可得s甲2>s乙2,
∴乙种西瓜的得分较稳定,
故答案为:乙;
(3)甲种西瓜的品质较好些,理由为:甲种西瓜得分的众数比乙种的高.
乙种西瓜的品质较好些,理由为:乙种西瓜得分的中位数比甲种的高.
一十七.列表法与树状图法(共3小题)
22.(2022•南通)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.
(1)从袋子中随机摸出一个球,摸到蓝球的概率是 ;
(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.
【解答】解:(1)从袋子中随机摸出一个球,摸到蓝球的概率是,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果,其中两次摸到的球的颜色为“一红一黄”的结果有2种,
∴两次摸到的球的颜色为“一红一黄”的概率为.
23.(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.
(1)随机摸取一个小球的标号是奇数,该事件的概率为 ;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.
【解答】解:(1)随机摸取一个小球的标号是奇数,该事件的概率为 =,
故答案为:;
(2)画树状图如图:
共有16种等可能的结果,两次取出小球标号的和等于5的结果有4种,
∴两次取出小球标号的和等于5的概率为=.
24.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.
请用所学概率知识解决下列问题:
(1)写出这三辆车按先后顺序出发的所有可能结果;
(2)两人中,谁乘坐到甲车的可能性大?请说明理由.
【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;
(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,
则张先生坐到甲车的概率是=;
由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,
则李先生坐到甲车的概率是=;
所以两人坐到甲车的可能性一样.
相关试卷
这是一份江苏省镇江市2020-2022三年中考数学真题分类汇编-03解答题知识点分类(提升题)(含解析),共42页。试卷主要包含了【算一算】,和点B等内容,欢迎下载使用。
这是一份江苏省南京市中考数学试卷2020-2022三年中考数学真题分类汇编-03解答题提升题知识点分类(含解析),共31页。试卷主要包含了解不等式组,两点等内容,欢迎下载使用。
这是一份江苏省南京市中考数学试卷2020-2022三年中考数学真题分类汇编-03解答题基础题知识点分类(含解析),共14页。试卷主要包含了计算,先化简,再求值,解方程,≤3,并在数轴上表示解集,之间的函数关系如图所示等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)