![2023年新教材高中物理专练1匀变速直线运动粤教版必修第一册01](http://img-preview.51jiaoxi.com/3/6/14561777/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年新教材高中物理专练1匀变速直线运动粤教版必修第一册02](http://img-preview.51jiaoxi.com/3/6/14561777/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年新教材高中物理专练1匀变速直线运动粤教版必修第一册03](http://img-preview.51jiaoxi.com/3/6/14561777/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩3页未读,
继续阅读
成套系列资料,整套一键下载
2023年新教材高中物理专练1匀变速直线运动粤教版必修第一册
展开
这是一份2023年新教材高中物理专练1匀变速直线运动粤教版必修第一册,共6页。
专练一 匀变速直线运动
1.大雾天气给人们生活带来不便,假设一辆汽车在大雾天气中做匀减速直线运动直至停下来,汽车运动的位移-时间关系图像是( )
A B
C D
【答案】B 【解析】根据xt图线的斜率表示速度,汽车做匀减速运动,其斜率的绝对值应该越来越小,A选项表示汽车的速度增大,做加速直线运动;C选项表示汽车的速度不变,做匀速直线运动;D选项中的斜率为零,保持不变,说明汽车静止;B选项中切线的斜率减小直至为零,说明速度减小最后为零,能表示汽车的运动情况.
2.某质点从静止开始做加速度大小为2 m/s2的匀加速直线运动,下列说法错误的是( )
A.质点的加速度每隔1 s增大2 m/s2
B.质点在任意1 s的时间内末速度比初速度大2 m/s
C.质点在第1 s末、第2 s末、第3 s末的速度大小之比为1∶2∶3
D.质点在前2 s内、前4 s内、前6 s内的位移大小之比为1∶4∶9
【答案】A 【解析】质点做加速度大小为2 m/s2的匀加速直线运动,加速度恒定不变,故A错误;由Δv=aΔt可知,质点在任意1 s的时间内末速度比初速度大2 m/s,故B正确;质点做初速度为0的匀加速直线运动,根据v=at,可知质点在1 s末、2 s末、3 s末的速度大小之比为1∶2∶3,根据x=at2,可知质点在前2 s内、前4 s内、前6 s内的位移大小之比为1∶4∶9,故C、D正确.本题选错误的,故选A.
3.甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图像分别如图中的甲、乙两条图线,下列对甲、乙运动描述正确的是( )
A.0~t0时间内甲的加速度逐渐增大
B.0~t0时间内乙的加速度逐渐增大
C.0~t0时间内的某时刻甲、乙加速度相等
D.t0时刻两者相遇
【答案】C 【解析】由速度—时间图像中图线切线的斜率表示加速度,则知在0~t0时间内,甲做匀加速直线运动,加速度不变,乙的加速度逐渐减小,A、B错误;在0~t0时间内,对乙图线作切线,总会找到一条切线与甲图线平行,即在0~t0时间内的某时刻甲、乙加速度相等,C正确;在t0时刻两者的速度相等,由图线与时间轴围成的面积表示位移大小可知,在0~t0时间内,乙的位移比甲的大,但不知两车开始运动的位置关系,所以t0时刻两者不一定相遇,D错误.
4.甲、乙、丙三辆汽车同时以相同的速度经过某路标,从此时开始,甲车做匀速直线运动,乙车先加速后减速,丙车先减速后加速,它们经过下一个路标时的速度相同,则( )
A.甲车先通过下一路标
B.乙车先通过下一路标
C.丙车先通过下一路标
D.条件不足,无法判断
【答案】B 【解析】由于丙先减速后加速,它在整个运动过程中的平均速度比甲小,所以在相等位移内它的时间比甲多;乙先加速后减速,所以它在整个运动过程中的平均速度比甲大,经过相同的位移,它的时间肯定比匀速运动的甲少.由此可知,乙将最先到达下一个路标,丙最后一个到达下一个路标.故选B.
5.一辆汽车以20 m/s的速度在平直公路上匀速行驶.遇突发情况后,司机紧急刹车使车做匀减速直线运动.已知汽车的速度在1 s内减小了8 m/s,下列说法不正确的是( )
A.汽车在减速过程中的加速度大小为8 m/s2
B.在减速行驶的全过程中汽车的平均速度大小为10 m/s
C.汽车刹车后,在3 s内运动的距离是24 m
D.汽车刹车后,在2 s末的速度大小为4 m/s
【答案】C 【解析】汽车的速度在1 s内减小了8 m/s,所以汽车在减速过程中的加速度大小为8 m/s2,A正确;减速行驶的全过程中汽车的平均速度大小为= m/s=10 m/s,B正确;汽车运动的时间为t== s=2.5 s,故汽车刹车后,在3 s内运动的位移为x=×2.5 m=25 m,C错误;汽车刹车后,在2 s末的速度大小为v=20 m/s-8×2 m/s=4 m/s,D正确;本题选不正确的,故选C.
6.某质点由A经B到C做匀加速直线运动历时4 s.前2 s和后2 s位移分别为AB=8 m和BC=12 m,该质点的加速度及经B点的瞬时速度的大小分别是( )
A.1 m/s2 5 m/s B.2 m/s2 5 m/s
C.1 m/s2 10 m/s D.2 m/s2 10 m/s
【答案】A 【解析】根据xBC-xAB=aT2得加速度a== m/s2=1 m/s2.B点的速度等于AC段的平均速度,则有vB== m/s=5 m/s.故选A.
7.从距离地面10 m高处竖直向上抛出一个小球,它上升6 m后回落,最后到达地面.已知小球从抛出到落回地面用时3 s,重力加速度g取10 m/s2,小球运动过程中空气阻力大小不变,在整个过程中,下列说法正确的是( )
A.小球通过的路程是12 m
B.小球的位移大小是10 m
C.小球的平均速度是4 m/s
D.小球落地时的速度大小为30 m/s
【答案】B 【解析】物体上升过程的路程为6 m,最高点离地高度为16 m,故总路程为6 m+16 m=22 m,A错误;位移是从抛出点到地面的有向线段,大小为10 m,方向竖直向下,B正确;小球的平均速度是== m/s≈3.3 m/s,C错误;向上为正方向,若无空气阻力,则小球落地时的速度大小为v== m/s=8 m/s<30 m/s,由于有空气阻力,则落地的速度一定不可能等于30 m/s,D错误.
8.物体以速度v匀速通过直线上的A、B两点需要的时间为t,现在物体从A点由静止出发,先做加速度大小为a1的匀加速直线运动到某一最大速度vm后立即做加速度大小为a2的匀减速直线运动,至B点停下,历时仍为t,则下列说法中正确的是( )
A.vm可为许多值,与a1、a2的大小无关
B.vm可为许多值,与a1、a2的大小有关
C.a1、a2的值必须是一定的
D.满足+=的a1、a2均可以
【答案】D 【解析】设AB间的距离为x.当物体以速度v匀速通过A、B两点时,有x=vt.当物体先匀加速后匀减速通过A、B两点时,则有x=t1+t2=t ,解得 vm=2v,可知vm是定值,vm与a1、a2的大小无关,故A、B、C错误;匀加速运动的时间和匀减速运动的时间之和t=+,而vm=2v,代入整理得+=,所以满足+=的a1、a2均可以,故D正确.
9.某小组利用打点计时器对物块沿倾斜的长木板加速下滑时的运动进行研究.物块拖动纸带下滑,打出的纸带一部分如图所示.已知打点计时器所用交流电的频率为50 Hz,纸带上标出的每两个相邻点之间还有4个打出的点未画出.在ABCDE五个点中,打点计时器最先打出的是______点,在打出C点时物块的速度大小为________m/s(保留2位有效数字);物块下滑的加速度大小为________m/s2(保留2位有效数字).
【答案】A 0.23 0.75 【解析】分析可知,物块沿倾斜长木板做匀加速直线运动,纸带上的点迹,从A到E,间隔越来越大,可知,物块跟纸带的左端相连,纸带上最先打出的是A点;在打点计时器打C点瞬间,物块的速度vC== m/s=0.23 m/s;根据逐差法可知,物块下滑的加速度
a===0.75 m/s2.
10.一个滑雪的人,从85 m长的山坡上匀变速直线滑下,初速度是1.8 m/s,末速度是5.0 m/s,他通过这段山坡需要多长时间?
【答案】25 s 【解析】由题意,人做匀加速直线运动,则平均速度为=,
则位移为x=t,
则时间为t== s=25 s.
11.一质点自O点由静止出发做匀加速直线运动,依次经过A、B、C三点,已知A、B两点的距离为s,质点经过C点时的速度大小是经过A点时的4倍,经过AB、BC段的时间均为t,求该质点的加速度大小和O、A两点的距离.
【答案】 s 【解析】设质点经过A、B、C三点的速度大小分别为vA、vB、vC,质点的加速度大小为a.
质点从A到C过程中,根据匀变速直线运动的推论有vB=,
质点从A到B的过程中,有=,
加速度为a=,
联立以上及已知条件vC=4vA,
解得a=.
质点从O点到A点,根据速度位移公式有v=2asOA.
联立可得 sOA=s.
12.一辆巡逻车能在t1=10 s内由静止加速到最大速度v2=50 m/s,并能保持这个速度匀速行驶.在平直的高速公路上,该巡逻车由静止开始启动加速,追赶前方2 000 m处正以v1=35 m/s的速度匀速行驶的一辆卡车,问:
(1)巡逻车在追上卡车之前,巡逻车与卡车间的最大距离为多少?
(2)巡逻车至少需要多长时间才能追上卡车?
【答案】(1)2 122.5 m (2)150 s
【解析】(1)当巡逻车加速到与卡车速度相等时,它们之间有最大距离L,设此过程时间为t2,对巡逻车:匀加速阶段有v2=at1,
加速到与卡车速度相等时v1=at2,x1=at,对卡车:x2=v1t2,那么最大距离为
L=x2+d-x1=v1t2+d-at
=2 122.5 m.
(2)巡逻车加速过程的位移x3=at=250 m,卡车在此过程中的位移x4=v1t1=350 m,因为x3
at+v2(t-t1)=d+v1t,
解得t=150 s.
13.在某次“动物运动会”上,小白兔和小灰兔进行跑步比赛,两只小兔子都由静止从同一地点出发做加速直线运动,加速度方向一直不变,在第一个t0时间内,小白兔的加速度大小为a,小灰兔的加速度大小是小白兔的两倍;在接下来的t0时间内,小白兔的加速度大小增加为原来的两倍,小灰兔的加速度大小减小为原来的一半,求:
(1)小白兔在第一个t0末的速度大小和第一个t0内的位移大小;
(2)在2t0时间内小白兔与小灰兔跑过的总位移之比.
【答案】(1)at0 at (2)5∶7
【解析】(1)设小白兔在第一个t0末的速度为v,第一个t0内跑过的位移为x1,在第二个t0内跑过的位移为x2,由运动学公式得到第一个t0末小白兔的速度大小为v=at0,
第一个t0内小白兔的位移大小为
x1=at.
(2)小白兔在第二个t0内的位移大小为
x2=vt0+(2a)t=2at,
设小灰兔在第一个t0末的速度为v′,在第一、二个t0内跑过的位移分别为x1′、x2′,同理有v′=2at0,x1′=(2a)t,
x2′=v′t0+at=at,
设两只兔子跑过的位移分别为x、x′,则有
x=x1+x2=at,
x′=x1′+x2′=at,
解得两只兔子各自跑过的总位移之比为
=.
14.如图所示是某型号全液体燃料火箭发射时第一级火箭发动机工作时火箭的a-t图像,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第一级的推力降至60%,第一级的整个工作时间为200 s,由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看作均匀变化,试计算:
(1)t=50 s时火箭的速度大小;
(2)如果火箭是竖直发射的,在t=10 s前火箭的运动可看成匀加速运动,则t=10 s时火箭离地面的高度是多少?如果此时有一碎片脱落,将需多长时间落地?(g取10 m/s2,结果可用根式表示)
【答案】(1)875 m/s (2)750 m (15+5) s
【解析】(1)因为前50 s内,加速度可以看作均匀变化,则加速度图线可看为倾斜的直线,它与时间轴所围的面积大小就表示该时刻火箭的速度大小,所以有
v=×(15+20)×50 m/s=875 m/s,
t=50 s时火箭的速度大小为875 m/s.
(2)t=10 s时火箭离地面的高度是
h=at2=×15×102 m=750 m,
如果此时有一碎片脱落,它的初速度
v1=at=150 m/s,
离开火箭后该碎片做竖直方向的匀减速直线运动,设需t1时间落地,有
-h=v1t1-gt,
代入数据解得t1=(15+5) s.
专练一 匀变速直线运动
1.大雾天气给人们生活带来不便,假设一辆汽车在大雾天气中做匀减速直线运动直至停下来,汽车运动的位移-时间关系图像是( )
A B
C D
【答案】B 【解析】根据xt图线的斜率表示速度,汽车做匀减速运动,其斜率的绝对值应该越来越小,A选项表示汽车的速度增大,做加速直线运动;C选项表示汽车的速度不变,做匀速直线运动;D选项中的斜率为零,保持不变,说明汽车静止;B选项中切线的斜率减小直至为零,说明速度减小最后为零,能表示汽车的运动情况.
2.某质点从静止开始做加速度大小为2 m/s2的匀加速直线运动,下列说法错误的是( )
A.质点的加速度每隔1 s增大2 m/s2
B.质点在任意1 s的时间内末速度比初速度大2 m/s
C.质点在第1 s末、第2 s末、第3 s末的速度大小之比为1∶2∶3
D.质点在前2 s内、前4 s内、前6 s内的位移大小之比为1∶4∶9
【答案】A 【解析】质点做加速度大小为2 m/s2的匀加速直线运动,加速度恒定不变,故A错误;由Δv=aΔt可知,质点在任意1 s的时间内末速度比初速度大2 m/s,故B正确;质点做初速度为0的匀加速直线运动,根据v=at,可知质点在1 s末、2 s末、3 s末的速度大小之比为1∶2∶3,根据x=at2,可知质点在前2 s内、前4 s内、前6 s内的位移大小之比为1∶4∶9,故C、D正确.本题选错误的,故选A.
3.甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图像分别如图中的甲、乙两条图线,下列对甲、乙运动描述正确的是( )
A.0~t0时间内甲的加速度逐渐增大
B.0~t0时间内乙的加速度逐渐增大
C.0~t0时间内的某时刻甲、乙加速度相等
D.t0时刻两者相遇
【答案】C 【解析】由速度—时间图像中图线切线的斜率表示加速度,则知在0~t0时间内,甲做匀加速直线运动,加速度不变,乙的加速度逐渐减小,A、B错误;在0~t0时间内,对乙图线作切线,总会找到一条切线与甲图线平行,即在0~t0时间内的某时刻甲、乙加速度相等,C正确;在t0时刻两者的速度相等,由图线与时间轴围成的面积表示位移大小可知,在0~t0时间内,乙的位移比甲的大,但不知两车开始运动的位置关系,所以t0时刻两者不一定相遇,D错误.
4.甲、乙、丙三辆汽车同时以相同的速度经过某路标,从此时开始,甲车做匀速直线运动,乙车先加速后减速,丙车先减速后加速,它们经过下一个路标时的速度相同,则( )
A.甲车先通过下一路标
B.乙车先通过下一路标
C.丙车先通过下一路标
D.条件不足,无法判断
【答案】B 【解析】由于丙先减速后加速,它在整个运动过程中的平均速度比甲小,所以在相等位移内它的时间比甲多;乙先加速后减速,所以它在整个运动过程中的平均速度比甲大,经过相同的位移,它的时间肯定比匀速运动的甲少.由此可知,乙将最先到达下一个路标,丙最后一个到达下一个路标.故选B.
5.一辆汽车以20 m/s的速度在平直公路上匀速行驶.遇突发情况后,司机紧急刹车使车做匀减速直线运动.已知汽车的速度在1 s内减小了8 m/s,下列说法不正确的是( )
A.汽车在减速过程中的加速度大小为8 m/s2
B.在减速行驶的全过程中汽车的平均速度大小为10 m/s
C.汽车刹车后,在3 s内运动的距离是24 m
D.汽车刹车后,在2 s末的速度大小为4 m/s
【答案】C 【解析】汽车的速度在1 s内减小了8 m/s,所以汽车在减速过程中的加速度大小为8 m/s2,A正确;减速行驶的全过程中汽车的平均速度大小为= m/s=10 m/s,B正确;汽车运动的时间为t== s=2.5 s,故汽车刹车后,在3 s内运动的位移为x=×2.5 m=25 m,C错误;汽车刹车后,在2 s末的速度大小为v=20 m/s-8×2 m/s=4 m/s,D正确;本题选不正确的,故选C.
6.某质点由A经B到C做匀加速直线运动历时4 s.前2 s和后2 s位移分别为AB=8 m和BC=12 m,该质点的加速度及经B点的瞬时速度的大小分别是( )
A.1 m/s2 5 m/s B.2 m/s2 5 m/s
C.1 m/s2 10 m/s D.2 m/s2 10 m/s
【答案】A 【解析】根据xBC-xAB=aT2得加速度a== m/s2=1 m/s2.B点的速度等于AC段的平均速度,则有vB== m/s=5 m/s.故选A.
7.从距离地面10 m高处竖直向上抛出一个小球,它上升6 m后回落,最后到达地面.已知小球从抛出到落回地面用时3 s,重力加速度g取10 m/s2,小球运动过程中空气阻力大小不变,在整个过程中,下列说法正确的是( )
A.小球通过的路程是12 m
B.小球的位移大小是10 m
C.小球的平均速度是4 m/s
D.小球落地时的速度大小为30 m/s
【答案】B 【解析】物体上升过程的路程为6 m,最高点离地高度为16 m,故总路程为6 m+16 m=22 m,A错误;位移是从抛出点到地面的有向线段,大小为10 m,方向竖直向下,B正确;小球的平均速度是== m/s≈3.3 m/s,C错误;向上为正方向,若无空气阻力,则小球落地时的速度大小为v== m/s=8 m/s<30 m/s,由于有空气阻力,则落地的速度一定不可能等于30 m/s,D错误.
8.物体以速度v匀速通过直线上的A、B两点需要的时间为t,现在物体从A点由静止出发,先做加速度大小为a1的匀加速直线运动到某一最大速度vm后立即做加速度大小为a2的匀减速直线运动,至B点停下,历时仍为t,则下列说法中正确的是( )
A.vm可为许多值,与a1、a2的大小无关
B.vm可为许多值,与a1、a2的大小有关
C.a1、a2的值必须是一定的
D.满足+=的a1、a2均可以
【答案】D 【解析】设AB间的距离为x.当物体以速度v匀速通过A、B两点时,有x=vt.当物体先匀加速后匀减速通过A、B两点时,则有x=t1+t2=t ,解得 vm=2v,可知vm是定值,vm与a1、a2的大小无关,故A、B、C错误;匀加速运动的时间和匀减速运动的时间之和t=+,而vm=2v,代入整理得+=,所以满足+=的a1、a2均可以,故D正确.
9.某小组利用打点计时器对物块沿倾斜的长木板加速下滑时的运动进行研究.物块拖动纸带下滑,打出的纸带一部分如图所示.已知打点计时器所用交流电的频率为50 Hz,纸带上标出的每两个相邻点之间还有4个打出的点未画出.在ABCDE五个点中,打点计时器最先打出的是______点,在打出C点时物块的速度大小为________m/s(保留2位有效数字);物块下滑的加速度大小为________m/s2(保留2位有效数字).
【答案】A 0.23 0.75 【解析】分析可知,物块沿倾斜长木板做匀加速直线运动,纸带上的点迹,从A到E,间隔越来越大,可知,物块跟纸带的左端相连,纸带上最先打出的是A点;在打点计时器打C点瞬间,物块的速度vC== m/s=0.23 m/s;根据逐差法可知,物块下滑的加速度
a===0.75 m/s2.
10.一个滑雪的人,从85 m长的山坡上匀变速直线滑下,初速度是1.8 m/s,末速度是5.0 m/s,他通过这段山坡需要多长时间?
【答案】25 s 【解析】由题意,人做匀加速直线运动,则平均速度为=,
则位移为x=t,
则时间为t== s=25 s.
11.一质点自O点由静止出发做匀加速直线运动,依次经过A、B、C三点,已知A、B两点的距离为s,质点经过C点时的速度大小是经过A点时的4倍,经过AB、BC段的时间均为t,求该质点的加速度大小和O、A两点的距离.
【答案】 s 【解析】设质点经过A、B、C三点的速度大小分别为vA、vB、vC,质点的加速度大小为a.
质点从A到C过程中,根据匀变速直线运动的推论有vB=,
质点从A到B的过程中,有=,
加速度为a=,
联立以上及已知条件vC=4vA,
解得a=.
质点从O点到A点,根据速度位移公式有v=2asOA.
联立可得 sOA=s.
12.一辆巡逻车能在t1=10 s内由静止加速到最大速度v2=50 m/s,并能保持这个速度匀速行驶.在平直的高速公路上,该巡逻车由静止开始启动加速,追赶前方2 000 m处正以v1=35 m/s的速度匀速行驶的一辆卡车,问:
(1)巡逻车在追上卡车之前,巡逻车与卡车间的最大距离为多少?
(2)巡逻车至少需要多长时间才能追上卡车?
【答案】(1)2 122.5 m (2)150 s
【解析】(1)当巡逻车加速到与卡车速度相等时,它们之间有最大距离L,设此过程时间为t2,对巡逻车:匀加速阶段有v2=at1,
加速到与卡车速度相等时v1=at2,x1=at,对卡车:x2=v1t2,那么最大距离为
L=x2+d-x1=v1t2+d-at
=2 122.5 m.
(2)巡逻车加速过程的位移x3=at=250 m,卡车在此过程中的位移x4=v1t1=350 m,因为x3
解得t=150 s.
13.在某次“动物运动会”上,小白兔和小灰兔进行跑步比赛,两只小兔子都由静止从同一地点出发做加速直线运动,加速度方向一直不变,在第一个t0时间内,小白兔的加速度大小为a,小灰兔的加速度大小是小白兔的两倍;在接下来的t0时间内,小白兔的加速度大小增加为原来的两倍,小灰兔的加速度大小减小为原来的一半,求:
(1)小白兔在第一个t0末的速度大小和第一个t0内的位移大小;
(2)在2t0时间内小白兔与小灰兔跑过的总位移之比.
【答案】(1)at0 at (2)5∶7
【解析】(1)设小白兔在第一个t0末的速度为v,第一个t0内跑过的位移为x1,在第二个t0内跑过的位移为x2,由运动学公式得到第一个t0末小白兔的速度大小为v=at0,
第一个t0内小白兔的位移大小为
x1=at.
(2)小白兔在第二个t0内的位移大小为
x2=vt0+(2a)t=2at,
设小灰兔在第一个t0末的速度为v′,在第一、二个t0内跑过的位移分别为x1′、x2′,同理有v′=2at0,x1′=(2a)t,
x2′=v′t0+at=at,
设两只兔子跑过的位移分别为x、x′,则有
x=x1+x2=at,
x′=x1′+x2′=at,
解得两只兔子各自跑过的总位移之比为
=.
14.如图所示是某型号全液体燃料火箭发射时第一级火箭发动机工作时火箭的a-t图像,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第一级的推力降至60%,第一级的整个工作时间为200 s,由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看作均匀变化,试计算:
(1)t=50 s时火箭的速度大小;
(2)如果火箭是竖直发射的,在t=10 s前火箭的运动可看成匀加速运动,则t=10 s时火箭离地面的高度是多少?如果此时有一碎片脱落,将需多长时间落地?(g取10 m/s2,结果可用根式表示)
【答案】(1)875 m/s (2)750 m (15+5) s
【解析】(1)因为前50 s内,加速度可以看作均匀变化,则加速度图线可看为倾斜的直线,它与时间轴所围的面积大小就表示该时刻火箭的速度大小,所以有
v=×(15+20)×50 m/s=875 m/s,
t=50 s时火箭的速度大小为875 m/s.
(2)t=10 s时火箭离地面的高度是
h=at2=×15×102 m=750 m,
如果此时有一碎片脱落,它的初速度
v1=at=150 m/s,
离开火箭后该碎片做竖直方向的匀减速直线运动,设需t1时间落地,有
-h=v1t1-gt,
代入数据解得t1=(15+5) s.
相关资料
更多