- 浙江省杭州市2023年中考数学试卷(附答案) 试卷 1 次下载
- 2023年山东省威海市中考数学试卷【含答案】 试卷 3 次下载
- 2023年辽宁省营口市中考数学试卷【含答案】 试卷 2 次下载
- 2023年江苏省无锡市中考数学试卷【含答案】 试卷 7 次下载
- 2023年吉林省中考数学试卷【含答案】 试卷 2 次下载
2023年山东省日照市中考数学试卷【含答案】
展开2023年山东省日照市中考数学试卷
一、选择题
1.(3分)计算2﹣(﹣3)的结果是( )
A.﹣1 B.1 C.﹣5 D.5
2.(3分)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.(3分)芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )
A.1.4×10﹣8 B.14×10﹣7 C.0.14×10﹣6 D.1.4×10﹣9
4.(3分)如图所示的几何体的俯视图可能是( )
A. B.
C. D.
5.(3分)在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是( )
A.23° B.53° C.60° D.67°
6.(3分)下列计算正确的是( )
A.a2•a3=a6 B.(﹣2m2)3=﹣8m6
C.(x+y)2=x2+y2 D.2ab+3a2b=5a3b2
7.(3分)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为( )
A.9x+11=6x+16 B.9x﹣11=6x﹣16
C.9x+11=6x﹣16 D.9x﹣11=6x+16
8.(3分)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,则灯塔的高度AD大约是( )(结果精确到1m,参考数据:≈1.41,≈1.73)
A.31m B.36m C.42m D.53m
9.(3分)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则( )
A.S1>S2 B.S1<S2
C.S1=S2 D.S1,S2大小无法确定
10.(3分)若关于x的方程﹣2=的解为正数,则m的取值范围是( )
A.m>﹣ B.m< C.m>﹣且m≠0 D.m<且m≠
11.(3分)在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0),满足,已知点(﹣3,m),(2,n),(4,t)在该抛物线上,则m,n,t的大小关系为( )
A.t<n<m B.m<t<n C.n<t<m D.n<m<t
12.(3分)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1+2+3+4+⋯+100时,用到了一种方法,将首尾两个数相加,进而得到1+2+3+4+⋯+100=.人们借助于这样的方法,得到1+2+3+4+⋯+n=(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai(xi,yi),其中i=1,2,3,⋯,n,⋯,且xi,yi是整数.记an=xn+yn,如A1(0,0),即a1=0,A2(1,0),即a2=1,A3(1,﹣1),即a3=0,⋯,以此类推.则下列结论正确的是( )
A.a2023=40 B.a2024=43
C.=2n﹣6 D.=2n﹣4
二、填空题
13.(3分)分解因式:a3b﹣ab= .
14.(3分)若点M(m+3,m﹣1)在第四象限,则m的取值范围是 .
15.(3分)已知反比例函数y=(k>1且k≠2)的图象与一次函数y=﹣7x+b的图象共有两个交点,且两交点横坐标的乘积x1•x2>0,请写出一个满足条件的k值 .
16.(3分)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:
①EM=EN;
②四边形MBND的面积不变;
③当AM:MD=1:2时,S△MPE=;
④BM+MN+ND的最小值是20.
其中所有正确结论的序号是 .
三、解答题
17.(10分)(1)化简:﹣|1﹣|+2﹣2﹣2sin45°;
(2)先化简,再求值:(﹣x)÷,其中x=﹣.
18.(12分)2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量x(m3)分为5组,第一组:5≤x<7,第二组:7≤x<9,第三组:9≤x<11,第四组:11≤x<13,第五组:13≤x<15,并对数据进行整理、描述和分析,得到如下信息:
信息一:
甲小区3月份用水量频数分布表
用水量(x/m3)
频数(户)
5≤x<7
4
7≤x<9
9
9≤x<11
10
11≤x<13
5
13≤x<15
2
信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:
甲小区
乙小区
平均数
9.0
9.1
中位数
9.2
a
信息三:乙小区3月份用水量在第三组的数据为:
9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6
根据以上信息,回答下列问题:
(1)a= ;
(2)在甲小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b1,在乙小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b2,比较b1,b2大小,并说明理由;
(3)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于13m3的总户数;
(4)因任务安排,需在B小组和C小组分别随机抽取1名同学加入A小组,已知B小组有3名男生和1名女生,C小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.
19.(12分)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.
(1)求证:四边形ABCD是菱形;
(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.
20.(12分)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.
(1)设制作A种木盒x个,则制作B种木盒 个;
若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;
(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;
(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.
21.(12分)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:
如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.
(1)求证:A,E,B,D四点共圆;
(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;
(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.
22.(14分)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.
(1)求点C,D的坐标;
(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;
(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.
①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;
②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.
1.D.
2.A.
3.A.
4.C.
5.B.
6.B.
7.D.
8.B.
9.C.
10.D.
11.C.
12.B.
13.ab(a+1)(a﹣1).
14.﹣3<m<1.
15.1.5(答案不唯一).
16.②③④.
17.(1)﹣|1﹣|+2﹣2﹣2sin45°
=2﹣(﹣1)+﹣2×
=2﹣+1+﹣
=;
(2)(﹣x)÷
=•
=•
=•
=2(x﹣2)
=2x﹣4,
当x=﹣时,原式=2×(﹣)﹣4
=﹣1﹣4
=﹣5.
18.(1)由统计图知,乙小区3月份用水量小于9m3的14户,
∵乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6,
∴第15个数据为9,第16个数据为9.2,
∴a==9.1,
故答案为:9.1;
(2)∵甲小区平均用水量为9.0m3,低于平均用水量的户数为13户,
∴b1=,
∵乙小区平均用水量为9.1m3,低于平均用水量的户数为15户,
∴b2=,
∴b1<b2;
(3)∵(600+750)×=90(户),
∴两个小区3月份用水量不低于13m3的总户数为90;
(4)根据题意列表得:
男
男
男
女
男
(男,男)
(男,男)
(男,男)
(女,男)
男
(男,男)
(男,男)
(男,男)
(女,男)
女
(男,女)
(男,女)
(男,女)
(女,女)
女
(男,女)
(男,女)
(男,女)
(女,女)
共有16种等可能的结果,其中抽取的两名同学都是男生有6种,
∴所抽取的两名同学都是男生的概率是=.
19.(1)证明:连接BD交AC于O,
∵四边形ABCD是平行四边形,
∴BO=OD,
在△BOE与△DOE中,
∴△BOE≌△DOE(SSS),
∴∠BEO=∠DEO,
在△BAE与△DAE中,
,
∴△BAE≌△DAE(SAS),
∴AB=AD,
∴四边形ABCD是菱形;
(2)解:在Rt△ABO中,∵tan∠BAC==2,
∴设AO=x,BO=2x,
∴AB==x=10,
∴x=2,
∴AO=2,BO=4,
∵四边形ABCD是菱形,
∴AC=2AO=4,BD=2BO=8,
∴四边形ABCD的面积=AC•BD==80.
20.(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,
故制作B种木盒(200﹣x)个;
∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,
故使用乙种方式切割的木板材(200﹣y)张;
故答案为:(200﹣x),(200﹣y);
(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,
使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm的木板;
设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,
制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;
故,
解得:,
故制作A种木盒100个,制作B种木盒100个,
使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,
(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,
故总成本为150×5+8×50=1150(元);
∵两种木盒的销售单价均不能低于7元,不超过18元,
∴,
解得:7≤a≤18,
设利润为w元,则w=100a+100(20﹣a)﹣1150,
整理得:w=850+50a,
∵50>0,
∴w随a的增大而增大,
故当a=18时,有最大值,最大值为850+50×18=1750(元),
则此时B种木盒的销售单价定为20﹣×18=11(元),
即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.
21.(1)证明:由旋转的性质可得 AE=AD,∠DAE=α,
∴∠BAC=∠DAE,
∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,
又∵AB=AC,
∴△ABE≌△ACD(SAS),
∴∠AEB=∠ADC,
∵∠ADC+∠ADB=180°,
∴∠AEB+∠ADB=180°,
∴A、B、D、E四点共圆;
(2)证明:如图所示,连接OA,OD,
∵AB=AC,AD=CD,
∴∠ABC=∠ACB=∠DAC,
∵⊙O是四边形AEBD的外接圆,
∴∠AOD=2∠ABC,
∴∠AOD=2∠ABC=2∠DAC,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠OAD+∠ODA+∠AOD=180°,
∴2∠DAC+2∠OAD=180°,
∴∠DAC+∠OAD=90°,即∠OAC=90°,
∴OA⊥AC,
又∵OA是⊙O的半径,
∴AC是⊙O的切线;
(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:
∵AB=AC,∠BAC=120°,
∴∠ABC=∠ACB=30°,
∵点M是边BC的中点,
∴,AM⊥BC,
∴,,
在Rt△BGF中,,
∴FM=BM﹣BF=3﹣2=1,
∵⊙P是四边形AEBD的外接圆,
∴点P一定在AB的垂直平分线上,
∴点P在直线GF上,
∴当MP⊥GF时,PM有最小值,
∴∠PFM=∠BFG=90°﹣∠B=60°,
在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,
∴圆心P与点M距离的最小值为 .
22.解:(1)在 y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,
∴C(0,2),
∵抛物线解析式为 y=﹣ax2+5ax+2(a>0),
∴抛物线对称轴为直线 ,
∵过点C作x轴的平行线交该抛物线于点D,
∴C、D关于抛物线对称轴对称,
∴D(5,2);
(2)当 时,抛物线解析式为 ,
当y=0时,,
解得 x=﹣1或 x=6,
∴A(﹣1,0),
如图,设DP上与点M关于直线AD对称的点为N(m,n),
由轴对称的性质可得:AN=AM,DN=DM,
,
∴3m+n=12,
∴n=12﹣3m
∴m2+2m+1+144﹣72m+9m2=25,
∴m2﹣7m+12=0,
解得m=3或m=4(舍去),
∴n=12﹣3m=3,
∴N(3,3),
设直线DP的解析式为y=kx+b1,
∴,
解得,
∴直线DP的解析式为 ,
联立,
解得或,
∴P(,);
(3)①当a=1时,抛物线解析式为 y=﹣x2+5x+2,E(1,2),F(5,2),
∴EH=EF=FG=4,
∴H(1,6),G(5,6),
当x=1时,y=﹣12+5×1+2=6,
∴抛物线 y=﹣x2+5x+2 恰好经过H(1,6);
∵抛物线对称轴为直线 ,由对称性可知抛物线经过(4,6),
∴点(4,6)为抛物线与正方形的一个交点,
又∵点F与点D重合,
∴抛物线也经过点F(5,2);
综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);
②如图,当抛物线与GH、GF分别交于T、D时,
∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为 ,
∴点T的纵坐标为2+2.5=4.5,
∴,
∴a2+1.5a﹣1=0,
解得a=﹣2(舍去)或a=0.5;
如图,当抛物线与GH、EF分别交于T、S,
∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为 ,
∴,
解得a=0.4(舍去,因为此时点F在点D下方)
如图,当抛物线与EH、EF分别交于T、S,
∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,
∴﹣a()2+5a•+2=a+1+2.5,
解得 或 (舍去);
当 时,y=﹣ax2+5ax+2=6.25a+2,
当时,,
∴ 不符合题意;
综上所述,a=0.5.
2023年山东省日照市中考数学试卷: 这是一份2023年山东省日照市中考数学试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年山东省日照市中考数学试卷【附参考答案】: 这是一份2020年山东省日照市中考数学试卷【附参考答案】,共11页。
2019年山东省日照市中考数学试卷【附参考答案】: 这是一份2019年山东省日照市中考数学试卷【附参考答案】,共11页。