初中数学湘教版七年级上册3.4 一元一次方程模型的应用课后练习题
展开2023年湘教版数学七年级上册
《3.4 一元一次方程模型的应用》课时练习
1.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2(x-1)+3x=13 B.2(x+1)+3x=13
C.2x+3(x+1)=13 D.2x+3(x-1)=13
2.某车间有28名工人生产螺丝与螺母,每人每天生产螺丝12个或螺母18个,现有x名工人生产螺丝,恰好每天生产的螺丝和螺母按2:1配套,为求x,列方程为( )
A.12x =18(28﹣x); B.2×12x =18(28﹣x)
C.2×18x =12(28﹣x) D.12x =2×18(28﹣x)
3.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是 ( )
A.x(1+30%)×80%=2080 B.x·30%·80%=2080
C.2080×30%×80%=x D.x·30%=80%×2080
4.41人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x人挑土,则列出的方程是( )
A.2x-(30-x)=41 B.+(41-x)=30 C.x+=30 D.30-x=41-x
5.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )
A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20
C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20
6.某工程,甲独做需12天完成,乙独做需8天完成.现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是( )
A.(x+3)+x=1 B.(x+3)+(x﹣3)=1 C.x+x=1 D.x+(x﹣3)=1
7.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,若设原有树苗x棵,则根据题意列出方程正确的是( )
A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)
C.5(x+21-1)=6x D.5(x+21)=6x
8.某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )
A.要亏本4% B.可获利2% C.要亏本2% D.既不获利也不亏本
9.一个数的5倍与7的和等于87,若设这个数为x,则可列方程为 .
10.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,设到雷锋纪念馆的人数为x人,可列方程为 .
11.一项工程甲单独做要20小时,乙单独做要12小时.现在先由甲单独做5小时,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x小时,则所列的方程为____________.
12.某工厂预计今年比去年增产15﹪,达到年产量60万吨,设去年的年产量为x万吨,则可列方程 ;
13.一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是 元.
14.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,则山下到山顶的路程为________千米.
三 、解答题
15.某单位计划元旦组织员工到某地旅游,A、B两旅行社的服务质量相同,且到地的旅游价格都是每人300元,已知A旅行社表示可给每人七五折优惠,B旅行社可免去一人费用,其余八五折优惠.当该单位旅游人数为多少时,支付A、B两旅行社的总费用相同?
16.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了x(x>5)千米.
(1)用含x的代数式表示他应支付的车费.
(2)行驶30千米,应付多少钱?
(3)若他支付了46元,你能算出他乘坐的路程吗?
17.一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?
18. “双十一”期间,某电商决定对网上销售的商品一律打8折销售,张燕购买一台某种型号手机时发现,每台手机比打折前少支付500元,求每台该种型号手机打折前的售价.
19.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.
(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.
若x≤60,则费用表示为 ;若x>60,则费用表示为 .
(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?
20.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:
第1次:从右边一堆中拿出2枚棋子放入中间一堆;
第2次:从左边一堆中拿出1枚棋子放入中间一堆;
第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.
(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?
(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.
15.解:设当该单位旅游人数为x人时,支付给A、B两旅行社的总费用相同,
根据题意得:75%×300x=85%×300(x﹣1),
解得:x=16.
答:当该单位旅游人数为16人时,支付给A、B两旅行社的总费用相同.
16.解:(1)支付:车费:8+(x﹣3)×2=2x+2(元);
(2)当x=30时,2x+2=62(元)
答:他应该支付62元;
(3)由题意得2x+2=36,
解得:x=17
答:他乘坐的里程是17千米.
根据题意得:x﹣2=(14﹣x)+4,解得:x=10,
14﹣x=14﹣10=4.
答:长方形的长为10cm,宽为4cm.
x﹣0.8x=500,
解得:x=2500.
答:每台该种型号手机打折前的售价为2500元.
若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.
(2)设甲用户10月份用去煤气x立方米,
由60×0.8=48<84,得到x>60,
根据题意得:60×0.8+(x﹣60)×1.2=84,
解得:x=90.
答:甲用户10月份用去煤气90立方米.
依题意列等式:2x﹣(x﹣1)=15,
解得:x=14,
3x=42.
故共有42枚棋子;
(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.
理由:设原来平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.
3a﹣2a﹣(a﹣1)=1,
所以最后中间只剩1枚棋子.
初中数学湘教版七年级上册3.4 一元一次方程模型的应用达标测试: 这是一份初中数学湘教版七年级上册3.4 一元一次方程模型的应用达标测试,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版七年级上册3.4 一元一次方程模型的应用优秀同步测试题: 这是一份初中数学湘教版七年级上册3.4 一元一次方程模型的应用优秀同步测试题,共7页。试卷主要包含了8﹣x=20 B,已知下列两个应用题等内容,欢迎下载使用。
初中数学湘教版七年级上册3.4 一元一次方程模型的应用精练: 这是一份初中数学湘教版七年级上册3.4 一元一次方程模型的应用精练,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。