终身会员
搜索
    上传资料 赚现金
    _2023年浙江绍兴中考数学试题及答案
    立即下载
    加入资料篮
    _2023年浙江绍兴中考数学试题及答案01
    _2023年浙江绍兴中考数学试题及答案02
    _2023年浙江绍兴中考数学试题及答案03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    _2023年浙江绍兴中考数学试题及答案

    展开
    这是一份_2023年浙江绍兴中考数学试题及答案,共13页。试卷主要包含了小器一容三斛;大器一,填空题,解答题等内容,欢迎下载使用。

    2023年浙江绍兴中考数学试题及答案
    卷Ⅰ(选择题)
    一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分
    1.计算的结果是( )
    A. B. C.1 D.3
    2.据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )
    A. B. C. D.
    3.由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    4.下列计算正确的是( )
    A. B. C. D.
    5.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )
    A. B. C. D.
    6.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为斛,小容器的容量为斛,则可列方程组是( )
    A. B. C. D.
    7.在平面直角坐标系中,将点先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )
    A. B. C. D.
    8.如图,在矩形中,为对角线的中点,.动点在线段上,动点在线段上,点同时从点出发,分别向终点运动,且始终保持.点关于的对称点为;点关于的对称点为.在整个过程中,四边形形状的变化依次是( )

    A.菱形→平行四边形→矩形·平行四边形→菱形
    B.菱形→正方形→平行四边形→菱形→平行四边形
    C.平行四边形→矩形→平行四边形→菱形→平行四边形
    D.平行四边形→菱形→正方形→平行四边形→菱形
    9.已知点在同一个函数图象上,则这个函数图象可能是( )
    A. B. C. D.
    10.如图,在中,是边上的点(不与点重合).过点作交于点;过点作交于点.是线段上的点,;是线段上的点,.若已知的面积,则一定能求出( )

    A.的面积 B.的面积 C.的面积 D.的面积
    卷Ⅱ(非选择题)
    二、填空题(本大题有6小题,每小题5分,共30分)
    11.因式分解:________.
    12.如图,四边形内接于圆,若,则的度数是________.

    13.方程的解是________.
    14.如图,在菱形中,,连结,以点为圆心,长为半径作弧,交直线于点,连结,则的度数是________.

    15.如图,在平面直角坐标系中,函数(为大于0的常数,)图象上的两点,满足.的边轴,边轴,若的面积为6,则的面积是________.

    16.在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________.

    三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    17.(1)计算:.
    (2)解不等式:.
    18.某校兴趣小组通过调查,形成了如下调查报告(不完整).
    调查目的
    1.了解本校初中生最喜爱的球类运动项目
    2.给学校提出更合理地配置体育运动器材和场地的建议
    调查方式
    随机抽样调查
    调查对象
    部分初中生
    调查内容
    你最喜爱的一个球类运动项目(必选)
    A.篮球 B.乒乓球 C.足球 D.排球 E.羽毛球
    调查结果


    建议
    ……
    结合调查信息,回答下列问题:
    (1)本次调查共抽查了多少名学生?
    (2)估计该校900名初中生中最喜爱篮球项目的人数.
    (3)假如你是小组成员,垱向该校提一条合理建议.
    19.图1是某款篮球架,图2是其示意图,立柱垂直地面,支架与交于点,支架交于点,支架平行地面,篮筺与支架在同一直线上,米,米,.

    (1)求的度数.
    (2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网阬?请通过计算说明理由.
    (参考数据:)
    20.一条笔直的路上依次有三地,其中两地相距1000米.甲、乙两机器人分别从两地同时出发,去目的地,匀速而行.图中分别表示甲、乙机器人离地的距离(米)与行走时间(分钟)的函数关系图象.

    (1)求所在直线的表达式.
    (2)出发后甲机器人行走多少时间,与乙机器人相遇?
    (3)甲机器人到地后,再经过1分钟乙机器人也到地,求两地间的距离.
    21.如图,是的直径,是上一点,过点作的切线,交的延长线于点,过点作于点.

    (1)若,求的度数.
    (2)若,求的长.
    22.如图,在正方形中,是对角线上的一点(与点不重合),分别为垂足.连结,并延长交于点.

    (1)求证:.
    (2)判断与是否垂直,并说明理由.
    23.已知二次函数.
    (1)当时,
    ①求该函数图像的顶点坐标.
    ②当时,求的取值范围.
    (2)当时,的䀝大值为2;当时,的最大值为3,求二次函数的表达式.
    24.在平行四边形中(顶点按逆时针方向排列),为锐角,且.

    (1)如图1,求边上的高的长.
    (2)是边上的一动点,点同时绕点按逆时针方向旋转得点.
    ①如图2,当点落在射线上时,求的长.
    ②当是直角三角形时,求的长.
    参考答案
    一、选择题(本大题有10小题,共40分)
    1.A 2.B 3.D 4.C 5.C 6.B 7.D 8.A 9.B 10.D
    二、填空题(本大题有6小题,共30分)
    11. 12. 13. 14.或 15.2 16.或
    三、解答题(本大题有8小题,共80分)
    17.(本题满分8分)
    解:(1)原式.
    (2)移项得,
    即,
    ∴.
    ∴原不等式的解是.
    18.(本题满分8分)
    解:(1)被抽查学生数:,
    答:本次调查共抽查了100名学生.
    (2)被抽查的100人中最喜爱羽毛球的人数为:,
    ∴被抽查的100人中最喜爱篮球的人数为:,
    ∴(人).
    答:估计该校900名初中生中最喜爱篮球项目的人数为360.
    (3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.
    19.(本题满分8分)
    解:(1)∵,
    ∴,
    ∵,
    ∴.
    (2)该运动员能挂上篮网,理由如下.
    如图,延长交于点,

    ∵,
    ∴,
    又∵,∴,
    在中,,
    ∴,
    ∴该运动员能挂上篮网.
    20.(本题满分8分)
    解:(1)∵,∴所在直线的表达式为.
    (2)设所在直线的表达式为,
    ∵,
    ∴解得
    ∴.
    甲、乙机器人相遇时,即,解得,
    ∴出发后甲机器人行走分钟,与乙机器人相遇.
    (3)设甲机器人行走分钟时到地,地与地距离,
    则乙机器人分钟后到地,地与地距离,
    由,得.
    ∴.
    答:两地间的距离为600米.
    21.(本题满分10分)
    解:(1)∵于点,∴,
    ∴.

    (2)∵是的切线,是的半径,
    ∴..
    在中,
    ∵,
    ∴.
    ∵,

    ∴,即,
    ∴.
    22.(本题满分12分)
    (1)证明:在正方形中,,
    ∴,
    ∴.

    (2)解:与垂直,理由如下.
    连结交于点.
    ∵为正方形的对角线,∴,
    又∵,∴,
    ∴.
    在正方形中,,
    又∵,∴四边形为矩形,
    ∴,∴,∴.
    ∴,∴,
    ∴.
    23.(本题满分12分)
    解:(1)①当时,,
    ∴顶点坐标为.
    ②∵当时,随增大而增大,
    当时,随增大而减小,
    ∴当时,有最大值7.
    又当时,;当时,,
    ∴当时,.
    (2)∵时,的最大值为2;时,的最大值为3,
    ∴抛物线的对称轴在轴的右侧,∴,
    ∵抛物线开口向下,时,的最大值为2,
    ∴,
    又∵,∴,∵,∴.
    ∴二次函数的表达式为.
    24.(本题满分14分)
    解:(1)在中,,在中,.
    (2)①如图1,作于点,由(1)得,.作交延长线于点,则,

    ∴.

    ∴.
    由旋转知,∴.
    设,则.
    ∵,∴,
    ∴,∴,即,
    ∴,∴.
    (2)由旋转得,,
    又因为,所以.
    情况一:当以为直角顶点时,如图2.

    ∵,∴落在线段延长线上.
    ∵,∴,由(1)知,,∴.
    情况二:当以为直角顶点时,如图3.

    设与射线的交点为,
    作于点.
    ∵,∴,
    ∵,∴,
    ∴.
    又∵,
    ∴,
    ∴.
    设,则,

    ∵,
    ∴,
    ∴,∴,
    ∴,
    化简得,解得,
    ∴.
    情况三:当以为直角顶点时,
    点落在的延长线上,不符合题意.
    综上所述,或
    相关试卷

    2022年浙江绍兴中考数学试题及答案: 这是一份2022年浙江绍兴中考数学试题及答案,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省绍兴市中考数学试题及答案(图片版): 这是一份2023年浙江省绍兴市中考数学试题及答案(图片版),共8页。

    2023年浙江省绍兴市柯桥区中考三模数学试题(含答案): 这是一份2023年浙江省绍兴市柯桥区中考三模数学试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        _2023年浙江绍兴中考数学试题及答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map