搜索
    上传资料 赚现金
    英语朗读宝

    河北省2023届高三模拟数学试题 Word版含解析

    河北省2023届高三模拟数学试题  Word版含解析第1页
    河北省2023届高三模拟数学试题  Word版含解析第2页
    河北省2023届高三模拟数学试题  Word版含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省2023届高三模拟数学试题 Word版含解析

    展开

    这是一份河北省2023届高三模拟数学试题 Word版含解析,共27页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2023年高考模拟练习(全国一卷)数学学科
    一、单选题(每题5分,共40分)
    1. 已知集合,则的元素个数为( )
    A. 1 B. 2 C. 3 D. 4
    【答案】B
    【解析】
    分析】先化简集合,求出即得解.
    【详解】解:
    所以,所以的元素个数为2.
    故选:B.
    2. 若复数,在复平面内对应的点关于轴对称,且,则复数 ( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据复数的几何意义及对称性,得出复数,再利用复数的除法法则即可求解.
    【详解】由题意知,复数在复平面内对应的点,
    因为复数,在复平面内对应的点关于轴对称,
    所以复数在复平面对应的点为,即,则

    故选:C.
    3. 若a,b都是实数,则“”是“”的( )
    A. 充分不必要条件 B. 必要不充分条件
    C. 充要条件 D. 既不充分也不必要条件
    【答案】B
    【解析】
    【分析】根据充分条件、必要条件的定义判断可得;
    【详解】解:,都是实数,那么“” “”,
    反之不成立,例如:,,满足,但是无意义,
    “”是“”的必要不充分条件.
    故选:B.
    4. 2021年10月16日0时23分,长征二号F遥十三运载火箭在酒泉卫星发射中心点火升空,秒后,神舟十三号载人飞船进入预定轨道,顺利将翟志刚、王亚平、叶光富三名航天员送入太空.在不考虑空气阻力的条件下,从发射开始,火箭的最大飞行速度满足公式:,其中为火箭推进剂质量,为去除推进剂后的火箭有效载荷质量,为火箭发动机喷流相对火箭的速度.当时,千米/秒.在保持不变的情况下,若吨,假设要使超过第一宇宙速度达到千米/秒,则至少约为(结果精确到,参考数据:,)( )
    A. 吨 B. 吨 C. 吨 D. 吨
    【答案】B
    【解析】
    【分析】根据所给条件先求出,再由千米/秒列方程求解即可.
    【详解】因为当时,,
    所以,
    由,
    得,
    所以,
    解得(吨),
    即至少约为吨.
    故选:B
    5. 设双曲线 的左右焦点分别为,过的直线分别交双曲线左右两支于点M,N.若以MN为直径的圆经过点且,则双曲线的离心率为( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】由题意可得△MNF2为等腰直角三角形,设|MF2|=|NF2|=m,则|MN|m,运用双曲线的定义,求得|MN|=4a,可得m,再由勾股定理可得a,c的关系,即可得到所求离心率.
    【详解】若以MN为直径的圆经过右焦点F2,
    则,又|MF2|=|NF2|,
    可得△MNF2为等腰直角三角形,
    设|MF2|=|NF2|=m,则|MN|m,
    由|MF2|﹣|MF1|=2a,|NF1|﹣|NF2|=2a,
    两式相加可得|NF1|﹣|MF1|=|MN|=4a,
    即有m=2a,
    在直角三角形HF1F2中可得
    4c2=4a2+(2a+2a﹣2a)2,
    化为c2=3a2,
    即e.
    故选C.

    【点睛】本题考查双曲线的定义、方程和性质,主要是离心率的求法,注意运用等腰直角三角形的性质和勾股定理,考查运算能力,属于中档题.
    6. 设函数f(x)是定义在区间上的函数,f'(x)是函数f(x)的导函数,且,则不等式 的解集是
    A. B. (1,+∞) C. (-∞,1) D. (0,1)
    【答案】D
    【解析】
    【分析】构造函数,求导,结合,可得在上单调递增,则不等式,可变为,则,结合单调性即可求解.
    【详解】构造函数,则,由,所以,即在上单调递增.因为,则不等式,可变为,则,所以,所以,故选D
    【点睛】本题考查了利用导数研究函数的单调性,考查学生发散思维和计算能力,属中档题.解题的关键在于根据给出的条件,构造新函数,求导可应用题中条件,得到新函数的单调性,把问题转化为根据单调性解不等式问题,进而得到答案.
    7. 在圆幂定理中有一个切割线定理:如图1所示,QR为圆O的切线,R为切点,QCD为割线,则.如图2所示,在平面直角坐标系xOy中,已知点,点P是圆上的任意一点,过点作直线BT垂直AP于点T,则的最小值是( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】先利用和余弦定理得到,可得,即可求,进而求得,再利用基本不等式即可得到答案
    【详解】连接,

    在中,因为是的中点,
    所以,平方得,
    将代入可得,
    因为,所以,
    所以,
    在,,
    所以,
    当且仅当即时,取等号,
    故选:A
    8. 如图,在三棱锥中,平面,,,侧棱与平面所成的角为,为的中点,是侧棱上一动点,当的面积最小时,异面直线与所成角的余弦值为( )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】通过线面位置关系的证明得到的面积为,当的面积最小,此时,据此即可利用解三角形的方法进行求解即可
    【详解】由题意知为等腰直角三角形,因为为的中点,所以.
    又平面,所以,所以平面,
    所以,故的面积.
    易知,所以,所以,
    当最小时,的面积最小,此时.
    当时,过作,交的延长线于点,则,连接,如图,

    则为异面直线与所成的角或其补角.
    因为平面,所以为直线与平面所成的角,所以,所以,所以,.
    又,所以,所以,,在中,易知,所以,
    故当的面积最小时,异面直线与所成角的余弦值为
    故选:D
    【点睛】本题以三棱锥为载体考查空间线面关系的判定、线面角、异面直线所成的角,考查考生的空间想象能力、逻辑思维能力,属于中档题
    二、多选题(每题5分,共20分,漏选得2分,错选得0分)
    9. 2022年6月18日,很多商场都在搞促销活动.重庆市物价局派人对5个商场某商品同一天的销售量及其价格进行调查,得到该商品的售价元和销售量件之间的一组数据如下表所示:

    90
    95
    100
    105
    110

    11
    10
    8
    6
    5
    用最小二乘法求得关于的经验回归直线是,相关系数,则下列说法正确的有( )
    A. 变量与负相关且相关性较强
    B.
    C. 当时,的估计值为13
    D. 相应于点的残差为
    【答案】ABD
    【解析】
    【分析】根据相关性、相关系数判断A,利用样本中心点判断B,将代入回归直线方程判断C,求得时的估计值,进而求得对应的残差,从而判断D.
    【详解】对A,由回归直线可得变量,线性负相关,且由相关系数可知相关性强,故A正确;
    对B,由题可得,,
    故回归直线恒过点,故,即,故B正确;
    对C,当时,,故C错误;
    对D,相应于点的残差,故D正确.
    故选:ABD.
    10. 甲、乙、丙、丁、戊共5位志愿者被安排到,,,四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是( )
    A. 不同的安排方法共有240种
    B. 甲志愿者被安排到学校的概率是
    C. 若学校安排两名志愿者,则不同的安排方法共有120种
    D. 在甲志愿者被安排到学校支教的前提下,学校有两名志愿者的概率是
    【答案】ABD
    【解析】
    【分析】先将5人分成4组,然后排入4所学校即可判断A;
    分A学校只有一个人和A学校只有2个人,两种情况讨论,求出甲志愿者被安排到A学校的排法,再根据古典概型即可判断B;
    先将A学校的两名志愿者排好,再将剩下的3名志愿者安排到其他3所学校即可判断C;
    求出甲志愿者被安排到A学校的排法,然后再求出在甲志愿者被安排到A学校支教的前提下,A学校有两名志愿者的排法,根据条件概率进行计算,从而可判断D.
    详解】甲、乙、丙、丁、戊共5位志愿者被安排到A,B,C,D四所山区学校参加支教活动,
    则共有种安排方法,故A正确;
    甲志愿者被安排到A学校,
    若A学校只有一个人,则有种安排方法,
    若A学校只有2个人,则有种安排方法,
    所以甲志愿者被安排到A学校有种安排方法,
    所以甲志愿者被安排到A学校的概率是,故B正确;
    若A学校安排两名志愿者,则不同的安排方法共有种,故C错误;
    甲志愿者被安排到A学校有种安排方法,
    在甲志愿者被安排到A学校支教的前提下,A学校有两名志愿者的安排方法有24种,
    所以在甲志愿者被安排到A学校支教的前提下,A学校有两名志愿者的概率是,故D正确.
    故选:ABD.
    11. 平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的.已知在平面直角坐标系中,,,动点P满足,其轨迹为一条连续的封闭曲线C.则下列结论正确的是( )
    A. 曲线C与y轴的交点为, B. 曲线C关于x轴对称
    C. 面积的最大值为2 D. 的取值范围是
    【答案】ABD
    【解析】
    【分析】根据给定条件,求出曲线C的方程,由判断A;由曲线方程对称性判断B;取特值计算判断C;求出的范围计算判断D作答.
    【详解】设点,依题意,,整理得:,
    对于A,当时,解得 ,即曲线C与y轴的交点为,,A正确;
    对于B,因,由换方程不变,曲线C关于x轴对称,B正确;
    对于C,当时,,即点在曲线C上,,C不正确;
    对于D,由得:,解得,
    于是得,解得,D正确.
    故选:ABD
    【点睛】结论点睛:曲线C的方程为,(1)如果,则曲线C关于y轴对称;
    (2)如果,则曲线C关于x轴对称;(3)如果,则曲线C关于原点对称.
    12. 已知点 为正方体的棱的中点,过的平面截正方体,,下列说法正确的是( )
    A. 若与地面所成角的正切值为,则截面为正六边形或正三角形
    B. 与地面所成角为则截面不可能为六边形
    C. 若截面为正三角形 时,三棱锥的外接球的半径为
    D. 若截面为四边形,则截面与平面所成角的余弦值的最小值为
    【答案】AD
    【解析】
    【分析】取的中点,做底面,取的中点,连接、交于点,连接,在正方体中可判断平面与底面所成的角为,再分别取的中点,连接,可判断截面为正六边形;取的中点,连接,则为等边三角形,所以即为平面与平面所成的二面角的平面角可判断A;当时,,可判断四边形为等腰梯形,必与有交点,则截面为六边形可判断B;若截面为正三角形 时,则为的中点,所以三棱锥为正三棱锥,设正三角形的外接圆的圆心为,外接球的球心为,利用求出半径可判断C;若截面为四边形,则截面与底面棱的交点必在上,且截面为时与平面所成角的最大,此时的余弦值最小,求出余弦值可判断D.
    【详解】取的中点,做底面,则为的四等分点,
    且,分别取的中点,连接、交于点,则点为的四等分点,连接,在正方体中,,,此时平面,
    即平面与底面所成的角为,且,
    因为平面平面,所以平面与底面所成的角的正切值为,
    再分别取的中点,连接,即过的平面截正方体的截面为正六边形;取的中点,连接,则为等边三角形,,所以即为平面与平面所成的二面角的平面角, 且,,,
    所以平面与平面所成的二面角的平面角的正切值为,此时为等边三角形,故A正确;

    当时,,所以,所以,
    由于,所以为等腰直角三角形,,
    由于,所以四边形为等腰梯形,必与有交点,
    则截面六边形,故B错误;

    若截面为正三角形 时,则为的中点,
    所以三棱锥为正三棱锥,且,,
    设正三角形的外接圆的圆心为,外接球的球心为,连接,
    则,, 因为,
    所以,在中,
    因为,所以,解得,故C错误; ,

    若截面为四边形,则截面与底面棱的交点必在上,且截面为时与平面所成角的最大,此时的余弦值最小,连接,取的中点,连接,,则,,四边形为等腰梯形,,
    则即为截面为时与平面所成平面角,,
    ,,在中,
    由余弦定理得,故D正确.

    故选:AD.
    三、填空题(每题5分,共20分)
    13. 已知,则_____________.
    【答案】30
    【解析】
    【分析】利用二项式定理的原理与组合的意义求解即可.
    【详解】因为,所以是含项的系数,
    若从10个式子中取出0个,则需要从中取出3个,7个1,则得到的项为;
    若从10个式子中取出1个,则需要从中取出1个,8个1,则得到的项为;
    若从10个式子中取出大于或等于2个,则无法得到含的项;
    综上:含的项为,则含项的系数为,即.
    故答案为:.
    14. 已知正三角形ABC内接于半径为2的圆O,点P是圆O上的一个动点,则的取值范围是________.
    【答案】
    【解析】
    【详解】在中, ,所以.

    .
    当点在圆上运动时,位于处时,有最大值为.
    当位于处时,有最小值为.
    .
    所以 .
    故答案为: .
    15. 已知数列满足,,,则的前项积的最大值为________.
    【答案】2
    【解析】
    【分析】由递推公式可得数列周期,从而根据周期性得出前项积的最大值.
    【详解】因为,所以,
    两式相除得,即,故数列的周期,
    由,,可得,
    设的前项积为,
    所以当,时,,
    当,时,,
    当,时,,
    所以的最大值为2.
    故答案为:2
    16. 历史上第一位研究圆锥曲线的数学家是梅纳库莫斯(公元前375年-325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质.如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆的切线垂直且过相应切点的直线,如图乙,椭圆的中心在坐标原点,分别为其左、右焦点,直线与椭圆相切于点(点在第一象限),过点且与切线垂直的法线与轴交于点,若直线的斜率为,,则椭圆的离心率为______.

    【答案】
    【解析】
    【分析】由离心率公式结合定义得出,再由正弦定理的边角互化得出椭圆的离心率.
    【详解】设,则,,,其中,所以椭圆的离心率为
    .
    故答案为:
    四、解答题(17题10分,其余12分,共70分)
    17. 已知菱形ABCD的边长为2,∠DAB=60°.E是边BC上一点,线段DE交AC于点F.

    (1)若△CDE的面积为,求DE的长;
    (2)若CF=4DF,求sin∠DFC.
    【答案】(1);(2).
    【解析】
    【分析】(1)由△CDE的面积求得,再由余弦定理可得;
    (2)结合已知由正弦定理可得,再由诱导公式与两角和的正弦公式可得结论.
    【详解】(1)依题意,得∠BCD=∠DAB=60°.
    因为△CDE的面积S=CD·CE·sin∠BCD=,
    所以,解得CE=1.
    在△CDE中,由余弦定理,得
    DE===.
    (2)依题意,得∠ACD=30°,∠BDC=60°,
    设∠CDE=θ,则0°

    相关试卷

    河北省唐山市2023届高三三模数学试题 Word版含解析:

    这是一份河北省唐山市2023届高三三模数学试题 Word版含解析,共23页。

    2023届河北省高三模拟(三)数学试题含解析:

    这是一份2023届河北省高三模拟(三)数学试题含解析,共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023届河北省高三模拟(五)数学试题含解析:

    这是一份2023届河北省高三模拟(五)数学试题含解析,共24页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map