所属成套资源:新人教a版数学选择性必修第三册练习全册
高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第一课时达标测试
展开这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第一课时达标测试,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
6.1 分类加法计数原理与分步乘法计数原理(第一课时)(同步检测)
一、选择题
1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架上任取1本书和从书架的第1层、第2层、第3层各取1本书的取法分别有( )
A.9种,20种 B.20种,9种
C.9种,24种 D.24种,9种
2.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )
A.10种 B.20种
C.25种 D.32种
3.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )
A.60 B.48
C.36 D.24
4.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )
A.14 B.13
C.12 D.10
5.现有四件不同款式的上衣与三条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,那么不同的选法种数为( )
A.7 B.64
C.12 D.81
6.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是( )
A.15 B.12
C.5 D.4
7.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有( )
A.18条 B.20条
C.25条 D.10条
8.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法共有( )
A.5种 B.10种
C.20种 D.120种
9.(多选)(2022年龙岩期末改编)某城市地铁公司为鼓励人们绿色出行,决定按照乘客的乘坐站数实施分段优惠政策,不超过9站的地铁票价如下表所示:
乘坐站数x
0
2
3
4
现有小花、小李两位乘客同时从首站乘坐同一辆地铁,已知他们乘坐地铁都不超过9站,且他们各自在每个站下地铁的可能性相同,则下列结论中正确的是( )
A.若小花、小李两人共花费5元,则小花、小李下地铁的方案共有9种
B.若小花、小李两人共花费5元,则小花、小李下地铁的方案共有18种
C.若小花、小李两人共花费6元,则小花、小李下地铁的方案共有27种
D.若小花、小李两人共花费6元,则小花比小李先下地铁的概率为
二、填空题
10.在所有的两位数中,个位数字大于十位数字的两位数的个数为________
11.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的各项的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个(用数字作答).
12.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.
13.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.
三、解答题
14.乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位,其余7名队员选2名安排在第二、四位,求不同的出场安排共有多少种?
15.从1,2,3,4中选三个数字,组成无重复数字的整数,则分别满足下列条件的数有多少个?
(1)三位数;(2)三位数的偶数.
16.在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现在从7人中选2人分别参加象棋比赛和围棋比赛,共有多少种不同的选法?
参考答案及解析:
一、选择题
1.C 解析:从书架上任取1本书,不同取法有4+3+2=9(种);从书架的第1层、第2层、第3层各取1本书,不同取法有4×3×2=24(种).故选C.
2.D 解析:每位同学限报其中的一个小组,各有2种报名方法,根据分步乘法计数原理,不同的报名方法共有25=32(种).
3.B 解析:首先考虑6个表面,每个表面有其相对的长方形的4条边与之平行,还有该四边形有2条对角线与之平行,因此每个表面可以构造6个平行线面组,6个表面,平行线面组就有6×6=36(个).再考虑对角面,即体对角线是其对角线的矩形,这样的矩形有6个,每个矩形对应有2条边与之平行,因此平行线面组一共有6×2=12(个).相加得48.
4.B 解析:由已知得ab≤1.当a=-1时,b=-1,0,1,2,有4种可能;当a=0时,b=-1,0,1,2,有4种可能;当a=1时,b=-1,0,1,有3种可能;当a=2时,b=-1,0,有2种可能.所以有序数对(a,b)的个数为4+4+3+2=13.
5.C
6.A 解析:利用分类加法计数原理.当x=1时,y=0,1,2,3,4,5,有6个;当x=2时,y=0,1,2,3,4,有5个;当x=3时,y=0,1,2,3,有4个.根据分类加法计数原理可得,共有6+5+4=15个.
7.A 解析:第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.
8.B 解析:由题意,可看作五个位置排列五种事物,第一个位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择,不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=10种.
9.BCD 解析:若小花、小李两人共花费5元,则两人中1人花费2元,1人花费3元,小花、小李下地铁的方案共有2×3×3=18(种),故A错误,B正确;若小花、小李两人共花费6元,则两人中1人花费2元、1人花费4元或2人都花费3元,小花、小李下地铁的方案共有2×3×3+3×3=27(种),C正确,其中小花比小李先下地铁有3×3+3=12(种),概率为=,故D正确.故选BCD.
二、填空题
10.答案:36
11.答案:18,6
解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知,共有二次函数的个数为3×3×2=18.其中不同的偶函数的个数为3×2=6.
12.答案:13
解析:按照焊接点脱落的个数进行分类: 第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,焊接点脱落的情况共有2+6+4+1=13(种).
13.答案:20,10
解析:产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.
三、解答题
14.解:按出场次序,第一位的队员的安排有3种方法,第二位的队员的安排有7种方法,第三位的队员的安排有2种方法,第四位的队员的安排有6种方法,第五位的队员的安排只有1种方法.
由分步乘法计数原理,得不同的出场安排种数为3×7×2×6×1=252.
15.解:(1)三位数有三个数位,
故可分三个步骤完成:
第1步,排个位,从1,2,3,4中选1个数字,有4种方法;
第2步,排十位,从剩下的3个数字中选1个,有3种方法;
第3步,排百位,从剩下的2个数字中选1个,有2种方法.
依据分步乘法计数原理,满足要求的三位数共有4×3×2=24(个).
(2)分三个步骤完成:
第1步,排个位,从2,4中选1个,有2种方法;
第2步,排十位,从余下的3个数字中选1个,有3种方法;
第3步,排百位,从余下的2个数字中选1个,有2种方法.
故三位数的偶数共有2×3×2=12(个).
16.解:选参加象棋比赛的学生有两种方法,在只会下象棋的3人中选或在既会下象棋又会下围棋的2人中选;选参加围棋比赛的学生也有两种选法,在只会下围棋的2人中选或在既会下象棋又会下围棋的2人中选.互相搭配,可得四类不同的选法.
从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;
从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,有3×2=6种选法;
从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,有2×2=4种选法;
2名既会下象棋又会下围棋的学生分别参加象棋比赛和围棋比赛,有2种选法.
所以共有6+6+4+2=18种选法.
所以共有18种不同的选法.
相关试卷
这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理巩固练习,共13页。
这是一份人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理精品同步练习题,文件包含同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理原卷版docx、同步讲义人教A版2019高中数学选修第三册61分类加法计数原理与分步乘法计数原理解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第二课时当堂达标检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。