资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
所属成套资源:人教a版数学选择性必修第三册习题全套
成套系列资料,整套一键下载
高中数学(人教A版2019)选择性必修第三册 第六章 计数原理 章末检测-(含答案)
展开
这是一份高中数学(人教A版2019)选择性必修第三册 第六章 计数原理 章末检测-(含答案),文件包含高中数学人教A版2019选择性必修第三册第六章计数原理章末检测答案docx、高中数学人教A版2019选择性必修第三册第六章计数原理章末检测docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
第六章 计数原理章末检测(答案)
一、单项选择题
1、已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )
A.12 B.8 C.6 D.4
2、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( B )
A.24 B.18 C.12 D.6
3、已知的展开式的第4项等于5,则x等于( B )
A. B.- C.7 D.-7
4、把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( D )
A.144 B.120 C.72 D.24
5、C+2C+4C+…+2n-1C=( D )
A.3n B.2·3n
C.-1 D.
解: C+2C+4C+…+2n-1C=20C+21C+22C+…+2n-1C=(21C+22C+23C+…+2nC)=(20C+21C+22C+23C+…+2nC)-=(1+2)n-=.
6、将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( C )
A.60种 B.120种 C.240种 D.480种
解: 根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:
第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C种分法;
第二步:将分好的4组安排到4个项目中,有A种安排方法.
故满足题意的分配方案共有C·A=240种.
7、已知m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( B )
A.5 B.6 C.7 D.8
解:由题意可知,a=C,b=C.
∵13a=7b,
∴13·=7·,
即=,解得m=6.
8、某工程队有6辆不同的工程车,按下列方式分给工地进行作业,每个工地至少分1辆工程车,则下列结论正确的是( D )
A.分给甲、乙、丙三地每地各2辆,有120种分配方式
B.分给甲、乙两地每地各2辆,分给丙、丁两地每地各1辆,有360种分配方式
C.分给甲、乙、丙三地,其中一地分4辆,另两地各分1辆,有60种分配方式
D.分给甲、乙、丙、丁四地,其中两地各分2辆,另两地各分1辆,有1 080种分配方式
解:选D.对A,先从6辆工程车中分给甲地2辆,有C种方法,再从剩余的4辆工程车中分给乙地2辆,有C种方法,最后的2辆分给丙地,有C种方法,所以不同的分配方式有CCC=90(种),故A错误;对B,6辆工程车先分给甲、乙两地每地各2辆,有CC种方法,剩余2辆分给丙、丁两地每地各1辆,有A种方法,所以不同的分配方式有CCA=180(种),故B错误;对C,先把6辆工程车分成3组:4辆、1辆、1辆,有C种方法,再分给甲、乙、丙三地,所以不同的分配方式有CA=90(种),故C错误;对D,先把6辆工程车分成4组:2辆、2辆、1辆、1辆,有·种方法,再分给甲、乙、丙、丁四地,所以不同的分配方式有··A=1 080(种),故D正确.故选D.
二、多项选择题
9、在二项式的展开式中,有( ABC )
A.含x的项 B.含的项
C.含x4的项 D.含的项
解: 二项式的展开式的通项为Tk+1=C·35-k·(-2)k·x10-3k,k=0,1,2,3,4,5,结合所给的选项,知ABC的项都含有.
10、若(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则下列结论中正确的是( ACD )
A.a0=1
B.a1+a2+a3+a4+a5=2
C.a0-a1+a2-a3+a4-a5=35
D.a0-|a1|+a2-|a3|+a4-|a5|=-1
解:令x=0,则a0=15=1,故A正确;
令x=1得-1=a0+a1+a2+a3+a4+a5,所以a1+a2+a3+a4+a5=-1-a0=-2,故B错误;
令x=-1得35=a0-a1+a2-a3+a4-a5,故C正确;
因为二项式(1-2x)5的展开式的第r+1项为Tr+1=C(-2)rxr,
所以当r为奇数时,C(-2)r为负数,即ai<0(其中i为奇数),
所以a0-|a1|+a2-|a3|+a4-|a5|=a0+a1+a2+a3+a4+a5=-1,故D正确.
11、若3男3女排成一排,则下列说法错误的是( BC )
A.共计有720种不同的排法
B.男生甲排在两端的共有120种排法
C.男生甲、乙相邻的排法总数为120种
D.男女生相间排法总数为72种
12、现有4个小球和4个小盒子,下面的结论正确的是( BCD )
A.若4个不同的小球放入编号为1,2,3,4的盒子,则共有24种放法
B.若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒的放法共有18种
C.若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒的放法共有144种
D.若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同的放法共有9种
解: 若4个不同的小球放入编号为1,2,3,4的盒子中,共有44=256(种)放法,故A错误;
若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒,则一个盒子放3个小球,另一个盒子放1个小球或两个盒子均放2个小球,共有C(A+1)=18(种)放法,故B正确;
若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒,则两个盒子中各放1个小球,另一个盒子中放2个小球,共有C·=144(种)放法,故C正确;
若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同,若(2,1,4,3)代表编号为1,2,3,4的盒子放入的小球编号分别为2,1,4,3,列出所有符合要求的情况:(2,1,4,3),(4,1,2,3),(3,1,4,2),(2,4,1,3),(3,4,1,2),(4,3,1,2),(2,3,4,1),(3,4,2,1),(4,3,2,1)共9种放法,故D正确.故选BCD.
三、填空题
13、某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法种数为___30_____.
14、在(1-)7+的展开式中,若x2的系数为19,则a=____2____.
解:(1-)7+的展开式中含x2的项为C(-)6+C()5=Cx2+Cx2a,则aC+C=19,解得a=2.
15、平面内有12个点,其中有4个点共线,此外再无任何3点共线.则以这些点为顶点,可构成不同的三角形有__216______个.
解:从12个点中任意取3个点,有C=220(种)取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C=4(种).
故这12个点构成三角形的个数为C-C=216.
16、某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有___114_____种不同的安排方法.(用数字作答)
解5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C·A=60(种),A,B住同一房间有C·A=18(种),故有60-18=42(种),当为(2,2,1)时,有·A=90(种),A,B住同一房间有C·A=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种).
四、解答题
17、在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为210,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.
注:如果选择多个条件分别解答,按第一个解答计分.
已知(2x-1)n=a0+a1x1+a2x2+a3x3+…+anxn(n∈N*),若(2x-1)n的展开式中,________.
(1)求n的值;
(2)求|a1|+|a2|+|a3|+…+|an|的值.
解 (1)选择条件①:
若(2x-1)n的展开式中只有第6项的二项式系数最大,则=5.
所以n=10.
选择条件②:
若(2x-1)n的展开式中第4项与第8项的二项式系数相等, C=C.
所以n=10.
选择条件③:
若(2x-1)n的展开式中所有二项式系数的和为210,则2n=210.
所以n=10.
(2)由(1)知n=10,则(2x-1)10=a0+a1x1+a2x2+a3x3+…+a10x10,
令x=0,则a0=1,
令x=-1,则
310=a0-a1+a2-a3+…+a10
=1+|a1|+|a2|+|a3|+…+|a10|,
所以|a1|+|a2|+|a3|+…+|a10|=310-1.
18、按下列要求分配6本不同的书,各有多少种不同的分配方法?
(1)分成三份,1份1本,1份2本,1份3本;
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;
(3)平均分成三份,每份2本;
(4)平均分配给甲、乙、丙三人,每人2本;
解: (1)无序不均匀分组问题.先选1本有C种选法;再从余下的5本中选2本有C种选法;最后余下3本全选有C种方法,故共有CCC=60种.
(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)题基础上,还应考虑再分配,共有CCCA=360种.
(3)无序均匀分组问题.共有=15种.
(4)在(3)的基础上,还应考虑再分配,共有15A=90种.
19、求证:
(1);
(2).
(1)证明:.
(2)证明:
20、已知在的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数.
解 (1)通项公式为Tr+1=
Cxx-=Cx,
∵第6项为常数项,∴r=5时,有=0,即n=10.
(2)令=2,得r=(n-6)
=×(10-6)=2,
∴含x2的项的系数为C=.
21、如图,从左到右共有5个空格.
(1)向5个空格中分别放入0,1,2,3,4这5个数字,一共可组成多少个不同的五位数的奇数?
(2)用红、黄、蓝这3种颜色给5个空格涂色,要求相邻空格用不同的颜色涂色,一共有多少种涂色方案?
解:(1)由题意,选一个奇数放在个位有2种放法,从余下的数中选一个数放在万位有3种放法,
再放余下的第二、三、四位,共有种,根据分步乘法原理,这样的五位数的奇数共有(个).
(2)从左数第1个格子有3种涂色方案,则剩下的每个格子均有2种涂色方案,故涂色方案共有(种).
22、在二项式的展开式中,______.
给出下列条件:
①若展开式前三项的二项式系数的和等于46;
②所有奇数项的二项式系数的和为256.
试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:
(1)求展开式中二项式系数最大的项;
(2)求展开式的常数项.
选择①.
,即,
即,即,
解得或(舍去).
选择②.
,即,解得.
(1)展开式中二项式系数最大的项为第5项和第6项,
,
.
(2)展开式的通项为,
令,得,
所以展开式中常数项为第7项,
常数项为.
第六章 计数原理章末检测(答案)
一、单项选择题
1、已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )
A.12 B.8 C.6 D.4
2、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( B )
A.24 B.18 C.12 D.6
3、已知的展开式的第4项等于5,则x等于( B )
A. B.- C.7 D.-7
4、把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( D )
A.144 B.120 C.72 D.24
5、C+2C+4C+…+2n-1C=( D )
A.3n B.2·3n
C.-1 D.
解: C+2C+4C+…+2n-1C=20C+21C+22C+…+2n-1C=(21C+22C+23C+…+2nC)=(20C+21C+22C+23C+…+2nC)-=(1+2)n-=.
6、将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( C )
A.60种 B.120种 C.240种 D.480种
解: 根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:
第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C种分法;
第二步:将分好的4组安排到4个项目中,有A种安排方法.
故满足题意的分配方案共有C·A=240种.
7、已知m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( B )
A.5 B.6 C.7 D.8
解:由题意可知,a=C,b=C.
∵13a=7b,
∴13·=7·,
即=,解得m=6.
8、某工程队有6辆不同的工程车,按下列方式分给工地进行作业,每个工地至少分1辆工程车,则下列结论正确的是( D )
A.分给甲、乙、丙三地每地各2辆,有120种分配方式
B.分给甲、乙两地每地各2辆,分给丙、丁两地每地各1辆,有360种分配方式
C.分给甲、乙、丙三地,其中一地分4辆,另两地各分1辆,有60种分配方式
D.分给甲、乙、丙、丁四地,其中两地各分2辆,另两地各分1辆,有1 080种分配方式
解:选D.对A,先从6辆工程车中分给甲地2辆,有C种方法,再从剩余的4辆工程车中分给乙地2辆,有C种方法,最后的2辆分给丙地,有C种方法,所以不同的分配方式有CCC=90(种),故A错误;对B,6辆工程车先分给甲、乙两地每地各2辆,有CC种方法,剩余2辆分给丙、丁两地每地各1辆,有A种方法,所以不同的分配方式有CCA=180(种),故B错误;对C,先把6辆工程车分成3组:4辆、1辆、1辆,有C种方法,再分给甲、乙、丙三地,所以不同的分配方式有CA=90(种),故C错误;对D,先把6辆工程车分成4组:2辆、2辆、1辆、1辆,有·种方法,再分给甲、乙、丙、丁四地,所以不同的分配方式有··A=1 080(种),故D正确.故选D.
二、多项选择题
9、在二项式的展开式中,有( ABC )
A.含x的项 B.含的项
C.含x4的项 D.含的项
解: 二项式的展开式的通项为Tk+1=C·35-k·(-2)k·x10-3k,k=0,1,2,3,4,5,结合所给的选项,知ABC的项都含有.
10、若(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则下列结论中正确的是( ACD )
A.a0=1
B.a1+a2+a3+a4+a5=2
C.a0-a1+a2-a3+a4-a5=35
D.a0-|a1|+a2-|a3|+a4-|a5|=-1
解:令x=0,则a0=15=1,故A正确;
令x=1得-1=a0+a1+a2+a3+a4+a5,所以a1+a2+a3+a4+a5=-1-a0=-2,故B错误;
令x=-1得35=a0-a1+a2-a3+a4-a5,故C正确;
因为二项式(1-2x)5的展开式的第r+1项为Tr+1=C(-2)rxr,
所以当r为奇数时,C(-2)r为负数,即ai<0(其中i为奇数),
所以a0-|a1|+a2-|a3|+a4-|a5|=a0+a1+a2+a3+a4+a5=-1,故D正确.
11、若3男3女排成一排,则下列说法错误的是( BC )
A.共计有720种不同的排法
B.男生甲排在两端的共有120种排法
C.男生甲、乙相邻的排法总数为120种
D.男女生相间排法总数为72种
12、现有4个小球和4个小盒子,下面的结论正确的是( BCD )
A.若4个不同的小球放入编号为1,2,3,4的盒子,则共有24种放法
B.若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒的放法共有18种
C.若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒的放法共有144种
D.若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同的放法共有9种
解: 若4个不同的小球放入编号为1,2,3,4的盒子中,共有44=256(种)放法,故A错误;
若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒,则一个盒子放3个小球,另一个盒子放1个小球或两个盒子均放2个小球,共有C(A+1)=18(种)放法,故B正确;
若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒,则两个盒子中各放1个小球,另一个盒子中放2个小球,共有C·=144(种)放法,故C正确;
若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同,若(2,1,4,3)代表编号为1,2,3,4的盒子放入的小球编号分别为2,1,4,3,列出所有符合要求的情况:(2,1,4,3),(4,1,2,3),(3,1,4,2),(2,4,1,3),(3,4,1,2),(4,3,1,2),(2,3,4,1),(3,4,2,1),(4,3,2,1)共9种放法,故D正确.故选BCD.
三、填空题
13、某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法种数为___30_____.
14、在(1-)7+的展开式中,若x2的系数为19,则a=____2____.
解:(1-)7+的展开式中含x2的项为C(-)6+C()5=Cx2+Cx2a,则aC+C=19,解得a=2.
15、平面内有12个点,其中有4个点共线,此外再无任何3点共线.则以这些点为顶点,可构成不同的三角形有__216______个.
解:从12个点中任意取3个点,有C=220(种)取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C=4(种).
故这12个点构成三角形的个数为C-C=216.
16、某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有___114_____种不同的安排方法.(用数字作答)
解5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C·A=60(种),A,B住同一房间有C·A=18(种),故有60-18=42(种),当为(2,2,1)时,有·A=90(种),A,B住同一房间有C·A=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种).
四、解答题
17、在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为210,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.
注:如果选择多个条件分别解答,按第一个解答计分.
已知(2x-1)n=a0+a1x1+a2x2+a3x3+…+anxn(n∈N*),若(2x-1)n的展开式中,________.
(1)求n的值;
(2)求|a1|+|a2|+|a3|+…+|an|的值.
解 (1)选择条件①:
若(2x-1)n的展开式中只有第6项的二项式系数最大,则=5.
所以n=10.
选择条件②:
若(2x-1)n的展开式中第4项与第8项的二项式系数相等, C=C.
所以n=10.
选择条件③:
若(2x-1)n的展开式中所有二项式系数的和为210,则2n=210.
所以n=10.
(2)由(1)知n=10,则(2x-1)10=a0+a1x1+a2x2+a3x3+…+a10x10,
令x=0,则a0=1,
令x=-1,则
310=a0-a1+a2-a3+…+a10
=1+|a1|+|a2|+|a3|+…+|a10|,
所以|a1|+|a2|+|a3|+…+|a10|=310-1.
18、按下列要求分配6本不同的书,各有多少种不同的分配方法?
(1)分成三份,1份1本,1份2本,1份3本;
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;
(3)平均分成三份,每份2本;
(4)平均分配给甲、乙、丙三人,每人2本;
解: (1)无序不均匀分组问题.先选1本有C种选法;再从余下的5本中选2本有C种选法;最后余下3本全选有C种方法,故共有CCC=60种.
(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)题基础上,还应考虑再分配,共有CCCA=360种.
(3)无序均匀分组问题.共有=15种.
(4)在(3)的基础上,还应考虑再分配,共有15A=90种.
19、求证:
(1);
(2).
(1)证明:.
(2)证明:
20、已知在的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数.
解 (1)通项公式为Tr+1=
Cxx-=Cx,
∵第6项为常数项,∴r=5时,有=0,即n=10.
(2)令=2,得r=(n-6)
=×(10-6)=2,
∴含x2的项的系数为C=.
21、如图,从左到右共有5个空格.
(1)向5个空格中分别放入0,1,2,3,4这5个数字,一共可组成多少个不同的五位数的奇数?
(2)用红、黄、蓝这3种颜色给5个空格涂色,要求相邻空格用不同的颜色涂色,一共有多少种涂色方案?
解:(1)由题意,选一个奇数放在个位有2种放法,从余下的数中选一个数放在万位有3种放法,
再放余下的第二、三、四位,共有种,根据分步乘法原理,这样的五位数的奇数共有(个).
(2)从左数第1个格子有3种涂色方案,则剩下的每个格子均有2种涂色方案,故涂色方案共有(种).
22、在二项式的展开式中,______.
给出下列条件:
①若展开式前三项的二项式系数的和等于46;
②所有奇数项的二项式系数的和为256.
试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:
(1)求展开式中二项式系数最大的项;
(2)求展开式的常数项.
选择①.
,即,
即,即,
解得或(舍去).
选择②.
,即,解得.
(1)展开式中二项式系数最大的项为第5项和第6项,
,
.
(2)展开式的通项为,
令,得,
所以展开式中常数项为第7项,
常数项为.
相关资料
更多