终身会员
搜索
    上传资料 赚现金
    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数
    立即下载
    加入资料篮
    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数01
    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数02
    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数03
    还剩12页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数

    展开
    这是一份高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数,共15页。试卷主要包含了单选题,解答题,填空题等内容,欢迎下载使用。

    高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数

    一、单选题
    1.(2023·北京·统考高考真题)的展开式中的系数为(    ).
    A. B. C.40 D.80
    2.(2022·北京·统考高考真题)若,则(    )
    A.40 B.41 C. D.
    3.(2022·北京·统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是(    )

    A.当,时,二氧化碳处于液态
    B.当,时,二氧化碳处于气态
    C.当,时,二氧化碳处于超临界状态
    D.当,时,二氧化碳处于超临界状态
    4.(2023·北京·统考高考真题)已知数列满足,则(    )
    A.当时,为递减数列,且存在常数,使得恒成立
    B.当时,为递增数列,且存在常数,使得恒成立
    C.当时,为递减数列,且存在常数,使得恒成立
    D.当时,为递增数列,且存在常数,使得恒成立
    5.(2023·北京·统考高考真题)在复平面内,复数对应的点的坐标是,则的共轭复数(    )
    A. B.
    C. D.

    二、解答题
    6.(2023·北京·统考高考真题)为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
    时段
    价格变化
    第1天到第20天
    -
    +
    +
    0
    -
    -
    -
    +
    +
    0
    +
    0
    -
    -
    +
    -
    +
    0
    0
    +
    第21天到第40天
    0
    +
    +
    0
    -
    -
    -
    +
    +
    0
    +
    0
    +
    -
    -
    -
    +
    0
    -
    +
    用频率估计概率.
    (1)试估计该农产品价格“上涨”的概率;
    (2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
    (3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
    7.(2022·北京·统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
    甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
    乙:9.78,9.56,9.51,9.36,9.32,9.23;
    丙:9.85,9.65,9.20,9.16.
    假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
    (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
    (2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
    (3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
    8.(2021·北京·统考高考真题)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.
    现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.
    (I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.
    (i)如果感染新冠病毒的2人在同一组,求检测的总次数;
    (ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的
    分布列与数学期望E(X).
    (II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)

    三、填空题
    9.(2021·北京·统考高考真题)在的展开式中,常数项为 .

    参考答案:
    1.D
    【分析】写出的展开式的通项即可
    【详解】的展开式的通项为
    令得
    所以的展开式中的系数为
    故选:D
    【点睛】本题考查的是二项式展开式通项的运用,较简单.

    2.B
    【分析】利用赋值法可求的值.
    【详解】令,则,
    令,则,
    故,
    故选:B.

    3.D
    【分析】根据与的关系图可得正确的选项.
    【详解】当,时,,此时二氧化碳处于固态,故A错误.
    当,时,,此时二氧化碳处于液态,故B错误.
    当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.
    当,时,因, 故此时二氧化碳处于超临界状态,故D正确.
    故选:D

    4.B
    【分析】法1:利用数列归纳法可判断ACD正误,利用递推可判断数列的性质,故可判断B的正误.
    法2:构造,利用导数求得的正负情况,再利用数学归纳法判断得各选项所在区间,从而判断的单调性;对于A,构造,判断得,进而取推得不恒成立;对于B,证明所在区间同时证得后续结论;对于C,记,取推得不恒成立;对于D,构造,判断得,进而取推得不恒成立.
    【详解】法1:因为,故,
    对于A ,若,可用数学归纳法证明:即,
    证明:当时,,此时不等关系成立;
    设当时,成立,
    则,故成立,
    由数学归纳法可得成立.
    而,
    ,,故,故,
    故为减数列,注意
    故,结合,
    所以,故,故,
    若存在常数,使得恒成立,则,
    故,故,故恒成立仅对部分成立,
    故A不成立.
    对于B,若可用数学归纳法证明:即,
    证明:当时,,此时不等关系成立;
    设当时,成立,
    则,故成立即
    由数学归纳法可得成立.
    而,
    ,,故,故,故为增数列,
    若,则恒成立,故B正确.
    对于C,当时, 可用数学归纳法证明:即,
    证明:当时,,此时不等关系成立;
    设当时,成立,
    则,故成立即
    由数学归纳法可得成立.
    而,故,故为减数列,
    又,结合可得:,所以,
    若,若存在常数,使得恒成立,
    则恒成立,故,的个数有限,矛盾,故C错误.
    对于D,当时, 可用数学归纳法证明:即,
    证明:当时,,此时不等关系成立;
    设当时,成立,
    则,故成立
    由数学归纳法可得成立.
    而,故,故为增数列,
    又,结合可得:,所以,
    若存在常数,使得恒成立,则,
    故,故,这与n的个数有限矛盾,故D错误.
    故选:B.
    法2:因为,
    令,则,
    令,得或;
    令,得;
    所以在和上单调递增,在上单调递减,
    令,则,即,解得或或,
    注意到,,
    所以结合的单调性可知在和上,在和上,
    对于A,因为,则,
    当时,,,则,
    假设当时,,
    当时,,则,
    综上:,即,
    因为在上,所以,则为递减数列,
    因为,
    令,则,
    因为开口向上,对称轴为,
    所以在上单调递减,故,
    所以在上单调递增,故,
    故,即,
    假设存在常数,使得恒成立,
    取,其中,且,
    因为,所以,
    上式相加得,,
    则,与恒成立矛盾,故A错误;
    对于B,因为,
    当时,,,
    假设当时,,
    当时,因为,所以,则,
    所以,
    又当时,,即,
    假设当时,,
    当时,因为,所以,则,
    所以,
    综上:,
    因为在上,所以,所以为递增数列,
    此时,取,满足题意,故B正确;
    对于C,因为,则,
    注意到当时,,,
    猜想当时,,
    当与时,与满足,
    假设当时,,
    当时,所以,
    综上:,
    易知,则,故,
    所以,
    因为在上,所以,则为递减数列,
    假设存在常数,使得恒成立,
    记,取,其中,
    则,
    故,所以,即,
    所以,故不恒成立,故C错误;
    对于D,因为,
    当时,,则,
    假设当时,,
    当时,,则,
    综上:,
    因为在上,所以,所以为递增数列,
    因为,
    令,则,
    因为开口向上,对称轴为,
    所以在上单调递增,故,
    所以,
    故,即,
    假设存在常数,使得恒成立,
    取,其中,且,
    因为,所以,
    上式相加得,,
    则,与恒成立矛盾,故D错误.
    故选:B.
    【点睛】关键点睛:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.

    5.D
    【分析】根据复数的几何意义先求出复数,然后利用共轭复数的定义计算.
    【详解】在复平面对应的点是,根据复数的几何意义,,
    由共轭复数的定义可知,.
    故选:D

    6.(1)
    (2)
    (3)不变

    【分析】(1)计算表格中的的次数,然后根据古典概型进行计算;
    (2)分别计算出表格中上涨,不变,下跌的概率后进行计算;
    (3)通过统计表格中前一次上涨,后一次发生的各种情况进行推断第天的情况.
    【详解】(1)根据表格数据可以看出,天里,有个,也就是有天是上涨的,
    根据古典概型的计算公式,农产品价格上涨的概率为:
    (2)在这天里,有天上涨,天下跌,天不变,也就是上涨,下跌,不变的概率分别是,,,
    于是未来任取天,天上涨,天下跌,天不变的概率是
    (3)由于第天处于上涨状态,从前次的次上涨进行分析,上涨后下一次仍上涨的有次,不变的有次,下跌的有次,
    因此估计第次不变的概率最大.

    7.(1)0.4
    (2)
    (3)丙

    【分析】(1)    由频率估计概率即可
    (2)    求解得X的分布列,即可计算出X的数学期望.
    (3)    计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.
    【详解】(1)由频率估计概率可得
    甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
    故答案为0.4
    (2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3





    .
    ∴X的分布列为
    X
    0
    1
    2
    3
    P





    (3)丙夺冠概率估计值最大.
    因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.

    8.(1)①次;②分布列见解析;期望为;(2).
    【分析】(1)①由题设条件还原情境,即可得解;
    ②求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;
    (2)求出两名感染者在一组的概率,进而求出,即可得解.
    【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;
    所以总检测次数为20次;
    ②由题意,可以取20,30,
    ,,
    则的分布列:






    所以;
    (2)由题意,可以取25,30,
    两名感染者在同一组的概率为,不在同一组的概率为,
    则.



    9.
    【分析】利用二项式定理求出通项公式并整理化简,然后令的指数为零,求解并计算得到答案.
    【详解】的展开式的通项
    令,解得,
    故常数项为.
    故答案为:.

    相关试卷

    高考数学天津卷3年(2021-2023)真题分类汇编-计数原理与概率统计、复数: 这是一份高考数学天津卷3年(2021-2023)真题分类汇编-计数原理与概率统计、复数,共8页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。

    高考数学北京卷3年(2021-2023)真题分类汇编-选择题②: 这是一份高考数学北京卷3年(2021-2023)真题分类汇编-选择题②,共18页。试卷主要包含了单选题等内容,欢迎下载使用。

    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②: 这是一份高考数学北京卷3年(2021-2023)真题分类汇编-解答题②,共18页。试卷主要包含了解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学北京卷3年(2021-2023)真题分类汇编-计数原理与概率统计、推理与证明、复数
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map