搜索
    上传资料 赚现金
    英语朗读宝

    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②

    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②第1页
    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②第2页
    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②第3页
    还剩15页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②

    展开

    这是一份高考数学北京卷3年(2021-2023)真题分类汇编-解答题②,共18页。试卷主要包含了解答题等内容,欢迎下载使用。
    高考数学北京卷3年(2021-2023)真题分类汇编-解答题②

    一、解答题
    1.(2021·北京·统考高考真题)已知函数.
    (1)若,求曲线在点处的切线方程;
    (2)若在处取得极值,求的单调区间,以及其最大值与最小值.
    2.(2021·北京·统考高考真题)已知椭圆一个顶点,以椭圆的四个顶点为顶点的四边形面积为.
    (1)求椭圆E的方程;
    (2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
    3.(2021·北京·统考高考真题)设p为实数.若无穷数列满足如下三个性质,则称为数列:
    ①,且;
    ②;
    ③,.
    (1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;
    (2)若数列是数列,求;
    (3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.
    4.(2022·北京·统考高考真题)已知函数.
    (1)求曲线在点处的切线方程;
    (2)设,讨论函数在上的单调性;
    (3)证明:对任意的,有.
    5.(2022·北京·统考高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
    (1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
    (2)若为连续可表数列,求证:k的最小值为4;
    (3)若为连续可表数列,且,求证:.
    6.(2022·北京·统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
    甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
    乙:9.78,9.56,9.51,9.36,9.32,9.23;
    丙:9.85,9.65,9.20,9.16.
    假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
    (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
    (2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
    (3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
    7.(2023·北京·统考高考真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.
    (1)求的方程;
    (2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.
    8.(2023·北京·统考高考真题)设函数,曲线在点处的切线方程为.
    (1)求的值;
    (2)设函数,求的单调区间;
    (3)求的极值点个数.
    9.(2023·北京·统考高考真题)已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集M中最大的数.
    (1)若,求的值;
    (2)若,且,求;
    (3)证明:存在,满足 使得.

    参考答案:
    1.(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.
    【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;
    (2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.
    【详解】(1)当时,,则,,,
    此时,曲线在点处的切线方程为,即;
    (2)因为,则,
    由题意可得,解得,
    故,,列表如下:














    极大值

    极小值

    所以,函数的增区间为、,单调递减区间为.
    当时,;当时,.
    所以,,.
    2.(1);(2).
    【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.
    (2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.
    【详解】(1)因为椭圆过,故,
    因为四个顶点围成的四边形的面积为,故,即,
    故椭圆的标准方程为:.
    (2)

    设,
    因为直线的斜率存在,故,
    故直线,令,则,同理.
    直线,由可得,
    故,解得或.
    又,故,所以


    故即,
    综上,或.
    3.(1)不可以是数列;理由见解析;(2);(3)存在;.
    【分析】(1)由题意考查的值即可说明数列不是数列;
    (2)由题意首先确定数列的前4项,然后讨论计算即可确定的值;
    (3)构造数列,易知数列是的,结合(2)中的结论求解不等式即可确定满足题意的实数的值.
    【详解】(1)因 为 所以,
    因 为所 以
    所以数列,不可能是数列.
    (2)性质①,
    由性质③,因此或,或,
    若,由性质②可知,即或,矛盾;
    若,由有,矛盾.
    因此只能是.
    又因为或,所以或.
    若,则,
    不满足,舍去.
    当,则前四项为:0,0,0,1,
    下面用数学归纳法证明:
    当时,经验证命题成立,假设当时命题成立,
    当时:
    若,则,利用性质③:
    ,此时可得:;
    否则,若,取可得:,
    而由性质②可得:,与矛盾.
    同理可得:
    ,有;
    ,有;
    ,又因为,有
    即当时命题成立,证毕.
    综上可得:,.
    (3)令,由性质③可知:

    由于,
    因此数列为数列.
    由(2)可知:
    若;
    ,,
    因此,此时,,满足题意.
    【点睛】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.
    4.(1)
    (2)在上单调递增.
    (3)证明见解析

    【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;
    (2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;
    (3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,即得证.
    【详解】(1)解:因为,所以,
    即切点坐标为,
    又,
    ∴切线斜率
    ∴切线方程为:
    (2)解:因为,    
    所以,
    令,
    则,
    ∴在上单调递增,

    ∴在上恒成立,
    ∴在上单调递增.
    (3)解:原不等式等价于,
    令,,
    即证,
    ∵,

    由(2)知在上单调递增,
    ∴,

    ∴在上单调递增,又因为,
    ∴,所以命题得证.

    5.(1)是连续可表数列;不是连续可表数列.
    (2)证明见解析.
    (3)证明见解析.

    【分析】(1)直接利用定义验证即可;
    (2)先考虑不符合,再列举一个合题即可;
    (3)时,根据和的个数易得显然不行,再讨论时,由可知里面必然有负数,再确定负数只能是,然后分类讨论验证不行即可.
    【详解】(1),,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.
    (2)若,设为,则至多,6个数字,没有个,矛盾;
    当时,数列,满足,,,,,,,, .
    (3),若最多有种,若,最多有种,所以最多有种,
    若,则至多可表个数,矛盾,
    从而若,则,至多可表个数,
    而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,
    则所有数之和,,
    ,再考虑排序,排序中不能有和相同,否则不足个,
    (仅一种方式),
    与2相邻,
    若不在两端,则形式,
    若,则(有2种结果相同,方式矛盾),
    , 同理 ,故在一端,不妨为形式,
    若,则 (有2种结果相同,矛盾),同理不行,
    ,则 (有2种结果相同,矛盾),从而,
    由于,由表法唯一知3,4不相邻,、
    故只能,①或,②
    这2种情形,
    对①:,矛盾,
    对②:,也矛盾,综上,
    当时,数列满足题意,

    【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.

    6.(1)0.4
    (2)
    (3)丙

    【分析】(1)    由频率估计概率即可
    (2)    求解得X的分布列,即可计算出X的数学期望.
    (3)    计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.
    【详解】(1)由频率估计概率可得
    甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
    故答案为0.4
    (2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3





    .
    ∴X的分布列为
    X
    0
    1
    2
    3
    P





    (3)丙夺冠概率估计值最大.
    因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.

    7.(1)
    (2)证明见解析

    【分析】(1)结合题意得到,,再结合,解之即可;
    (2)依题意求得直线、与的方程,从而求得点的坐标,进而求得,再根据题意求得,得到,由此得解.
    【详解】(1)依题意,得,则,
    又分别为椭圆上下顶点,,所以,即,
    所以,即,则,
    所以椭圆的方程为.
    (2)因为椭圆的方程为,所以,
    因为为第一象限上的动点,设,则,
          
    易得,则直线的方程为,
    ,则直线的方程为,
    联立,解得,即,
    而,则直线的方程为,
    令,则,解得,即,
    又,则,,
    所以


    又,即,
    显然,与不重合,所以.
    8.(1)
    (2)答案见解析
    (3)3个

    【分析】(1)先对求导,利用导数的几何意义得到,,从而得到关于的方程组,解之即可;
    (2)由(1)得的解析式,从而求得,利用数轴穿根法求得与的解,由此求得的单调区间;
    (3)结合(2)中结论,利用零点存在定理,依次分类讨论区间,,与上的零点的情况,从而利用导数与函数的极值点的关系求得的极值点个数.
    【详解】(1)因为,所以,
    因为在处的切线方程为,
    所以,,
    则,解得,
    所以.
    (2)由(1)得,
    则,
    令,解得,不妨设,,则,
    易知恒成立,
    所以令,解得或;令,解得或;
    所以在,上单调递减,在,上单调递增,
    即的单调递减区间为和,单调递增区间为和.
    (3)由(1)得,,
    由(2)知在,上单调递减,在,上单调递增,
    当时,,,即
    所以在上存在唯一零点,不妨设为,则,
    此时,当时,,则单调递减;当时,,则单调递增;
    所以在上有一个极小值点;
    当时,在上单调递减,
    则,故,
    所以在上存在唯一零点,不妨设为,则,
    此时,当时,,则单调递增;当时,,则单调递减;
    所以在上有一个极大值点;
    当时,在上单调递增,
    则,故,
    所以在上存在唯一零点,不妨设为,则,
    此时,当时,,则单调递减;当时,,则单调递增;
    所以在上有一个极小值点;
    当时,,
    所以,则单调递增,
    所以在上无极值点;
    综上:在和上各有一个极小值点,在上有一个极大值点,共有个极值点.
    【点睛】关键点睛:本题第3小题的解题关键是判断与的正负情况,充分利用的单调性,寻找特殊点判断即可得解.
    9.(1),,,
    (2)
    (3)证明见详解

    【分析】(1)先求,根据题意分析求解;
    (2)根据题意题意分析可得,利用反证可得,在结合等差数列运算求解;
    (3)讨论的大小,根据题意结合反证法分析证明.
    【详解】(1)由题意可知:,
    当时,则,故;
    当时,则,故;
    当时,则故;
    当时,则,故;
    综上所述:,,,.
    (2)由题意可知:,且,
    因为,且,则对任意恒成立,
    所以,
    又因为,则,即,
    可得,
    反证:假设满足的最小正整数为,
    当时,则;当时,则,
    则,
    又因为,则,
    假设不成立,故,
    即数列是以首项为1,公差为1的等差数列,所以.
    (3)因为均为正整数,则均为递增数列,
    (ⅰ)若,则可取,满足 使得;
    (ⅱ)若,则,
    构建,由题意可得:,且为整数,
    反证,假设存在正整数,使得,
    则,可得,
    这与相矛盾,故对任意,均有.
    ①若存在正整数,使得,即,
    可取,
    满足,使得;
    ②若不存在正整数,使得,
    因为,且,
    所以必存在,使得,
    即,可得,
    可取,
    满足,使得;
    (ⅲ)若,
    定义,则,
    构建,由题意可得:,且为整数,
    反证,假设存在正整数,使得,
    则,可得,
    这与相矛盾,故对任意,均有.
    ①若存在正整数,使得,即,
    可取,
    即满足,使得;
    ②若不存在正整数,使得,
    因为,且,
    所以必存在,使得,
    即,可得,
    可取,
    满足,使得.
    综上所述:存在使得.
    【点睛】方法点睛:对于一些直接说明比较困难的问题,可以尝试利用反证法分析证明.

    相关试卷

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题:

    这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-解答题,共35页。试卷主要包含了解答题等内容,欢迎下载使用。

    高考数学全国甲卷(理)3年(2021-2023)真题分类汇编-解答题:

    这是一份高考数学全国甲卷(理)3年(2021-2023)真题分类汇编-解答题,共41页。试卷主要包含了解答题等内容,欢迎下载使用。

    高考数学北京卷3年(2021-2023)真题分类汇编-选择题②:

    这是一份高考数学北京卷3年(2021-2023)真题分类汇编-选择题②,共18页。试卷主要包含了单选题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map