年终活动
搜索
    上传资料 赚现金

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用

    立即下载
    加入资料篮
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用第1页
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用第2页
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用第3页
    还剩8页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用

    展开

    这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用,共11页。试卷主要包含了单选题等内容,欢迎下载使用。
    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-集合与常用逻辑用语

    一、单选题
    1.(2023·全国·统考高考真题)设甲:,乙:,则(    )
    A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件
    C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
    2.(2023·全国·统考高考真题)设集合,,若,则(    ).
    A.2 B.1 C. D.
    3.(2023·全国·统考高考真题)设全集,集合,(    )
    A. B.
    C. D.
    4.(2023·全国·统考高考真题)已知等差数列的公差为,集合,若,则(    )
    A.-1 B. C.0 D.
    5.(2023·全国·统考高考真题)设全集,集合,则(    )
    A. B. C. D.
    6.(2023·全国·统考高考真题)设全集,集合,则(    )
    A. B. C. D.
    7.(2023·全国·统考高考真题)设集合,集合,,则(    )
    A. B.
    C. D.
    8.(2023·全国·统考高考真题)记为数列的前项和,设甲:为等差数列;乙:为等差数列,则(    )
    A.甲是乙的充分条件但不是必要条件
    B.甲是乙的必要条件但不是充分条件
    C.甲是乙的充要条件
    D.甲既不是乙的充分条件也不是乙的必要条件
    9.(2023·全国·统考高考真题)已知集合,,则(    )
    A. B. C. D.2
    10.(2022·全国·统考高考真题)已知集合,则(    )
    A. B. C. D.
    11.(2022·全国·统考高考真题)集合,则(    )
    A. B. C. D.
    12.(2022·全国·统考高考真题)设集合,则(    )
    A. B. C. D.
    13.(2022·全国·统考高考真题)设全集,集合,则(    )
    A. B. C. D.
    14.(2022·全国·统考高考真题)设全集,集合M满足,则(    )
    A. B. C. D.
    15.(2022·全国·统考高考真题)若集合,则(    )
    A. B. C. D.
    16.(2021·全国·统考高考真题)设集合,则(    )
    A. B. C. D.
    17.(2021·全国·统考高考真题)已知集合,,则(    )
    A. B. C. D.
    18.(2021·全国·高考真题)设集合,则(    )
    A. B. C. D.
    19.(2021·全国·统考高考真题)等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则(    )
    A.甲是乙的充分条件但不是必要条件
    B.甲是乙的必要条件但不是充分条件
    C.甲是乙的充要条件
    D.甲既不是乙的充分条件也不是乙的必要条件
    20.(2021·全国·统考高考真题)设集合,则(    )
    A. B.
    C. D.
    21.(2021·全国·统考高考真题)已知命题﹔命题﹐,则下列命题中为真命题的是(    )
    A. B. C. D.
    22.(2021·全国·统考高考真题)已知全集,集合,则(    )
    A. B. C. D.
    23.(2021·全国·统考高考真题)设集合,,则(    )
    A. B. C. D.

    参考答案:
    1.B
    【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.
    【详解】当时,例如但,
    即推不出;
    当时,,
    即能推出.
    综上可知,甲是乙的必要不充分条件.
    故选:B
    2.B
    【分析】根据包含关系分和两种情况讨论,运算求解即可.
    【详解】因为,则有:
    若,解得,此时,,不符合题意;
    若,解得,此时,,符合题意;
    综上所述:.
    故选:B.

    3.A
    【分析】根据整数集的分类,以及补集的运算即可解出.
    【详解】因为整数集,,所以,.
    故选:A.
    4.B
    【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.
    【详解】依题意,等差数列中,,
    显然函数的周期为3,而,即最多3个不同取值,又,
    则在中,或,
    于是有,即有,解得,
    所以,.
    故选:B

    5.A
    【分析】由题意可得的值,然后计算即可.
    【详解】由题意可得,则.
    故选:A.
    6.A
    【分析】利用集合的交并补运算即可得解.
    【详解】因为全集,集合,所以,
    又,所以,
    故选:A.
    7.A
    【分析】由题意逐一考查所给的选项运算结果是否为即可.
    【详解】由题意可得,则,选项A正确;
    ,则,选项B错误;
    ,则或,选项C错误;
    或,则或,选项D错误;
    故选:A.
    8.C
    【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,
    【详解】方法1,甲:为等差数列,设其首项为,公差为,
    则,
    因此为等差数列,则甲是乙的充分条件;
    反之,乙:为等差数列,即为常数,设为,
    即,则,有,
    两式相减得:,即,对也成立,
    因此为等差数列,则甲是乙的必要条件,
    所以甲是乙的充要条件,C正确.
    方法2,甲:为等差数列,设数列的首项,公差为,即,
    则,因此为等差数列,即甲是乙的充分条件;
    反之,乙:为等差数列,即,
    即,,
    当时,上两式相减得:,当时,上式成立,
    于是,又为常数,
    因此为等差数列,则甲是乙的必要条件,
    所以甲是乙的充要条件.
    故选:C
    9.C
    【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出.
    方法二:将集合中的元素逐个代入不等式验证,即可解出.
    【详解】方法一:因为,而,
    所以.
    故选:C.
    方法二:因为,将代入不等式,只有使不等式成立,所以.
    故选:C.

    10.B
    【分析】方法一:求出集合后可求.
    【详解】[方法一]:直接法
    因为,故,故选:B.
    [方法二]:【最优解】代入排除法
    代入集合,可得,不满足,排除A、D;
    代入集合,可得,不满足,排除C.
    故选:B.
    【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;
    方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.

    11.A
    【分析】根据集合的交集运算即可解出.
    【详解】因为,,所以.
    故选:A.

    12.A
    【分析】根据集合的交集运算即可解出.
    【详解】因为,,所以.
    故选:A.

    13.D
    【分析】解方程求出集合B,再由集合的运算即可得解.
    【详解】由题意,,所以,
    所以.
    故选:D.

    14.A
    【分析】先写出集合,然后逐项验证即可
    【详解】由题知,对比选项知,正确,错误
    故选:

    15.D
    【分析】求出集合后可求.
    【详解】,故,
    故选:D

    16.B
    【分析】根据交集、补集的定义可求.
    【详解】由题设可得,故,
    故选:B.
    17.C
    【分析】分析可得,由此可得出结论.
    【详解】任取,则,其中,所以,,故,
    因此,.
    故选:C.
    18.B
    【分析】求出集合后可求.
    【详解】,故,
    故选:B.
    19.B
    【分析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案.
    【详解】由题,当数列为时,满足,
    但是不是递增数列,所以甲不是乙的充分条件.
    若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.
    故选:B.
    【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.
    20.B
    【分析】根据交集定义运算即可
    【详解】因为,所以,
    故选:B.
    【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.
    21.A
    【分析】由正弦函数的有界性确定命题的真假性,由指数函数的知识确定命题的真假性,由此确定正确选项.
    【详解】由于,所以命题为真命题;
    由于在上为增函数,,所以,所以命题为真命题;
    所以为真命题,、、为假命题.
    故选:A.
    22.A
    【分析】首先进行并集运算,然后进行补集运算即可.
    【详解】由题意可得:,则.
    故选:A.
    23.B
    【分析】利用交集的定义可求.
    【详解】由题设有,
    故选:B .

    相关试卷

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答:

    这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(解答,共37页。试卷主要包含了解答题等内容,欢迎下载使用。

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择:

    这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择,共27页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与:

    这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-空间向量与,共20页。试卷主要包含了单选题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map