所属成套资源:各地区高考数学3年(2021-2023)真题分类汇编
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-平面解析几 (2) 试卷 0 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-平面解析几 试卷 0 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-平面向量 试卷 0 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解 (2) 试卷 1 次下载
- 高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解 试卷 0 次下载
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解 (1)
展开
这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解 (1),共21页。试卷主要包含了多选题,填空题,双空题等内容,欢迎下载使用。
高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解三角形(多选题、填空题、双空题)
一、多选题
1.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
2.(2022·全国·统考高考真题)已知函数的图像关于点中心对称,则( )
A.在区间单调递减
B.在区间有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
3.(2022·全国·统考高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
二、填空题
4.(2021·北京·统考高考真题)若点关于轴对称点为,写出的一个取值为 .
5.(2021·浙江·统考高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则 .
6.(2021·全国·高考真题)已知函数的部分图像如图所示,则 .
7.(2021·全国·统考高考真题)已知函数的部分图像如图所示,则满足条件的最小正整数x为 .
8.(2021·全国·统考高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
9.(2022·浙江·统考高考真题)若,则 , .
10.(2022·浙江·统考高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积 .
11.(2022·全国·统考高考真题)已知中,点D在边BC上,.当取得最小值时, .
12.(2022·全国·统考高考真题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
13.(2023·全国·统考高考真题)若为偶函数,则 .
14.(2023·全国·统考高考真题)已知函数,如图A,B是直线与曲线的两个交点,若,则 .
15.(2023·全国·统考高考真题)在中,,的角平分线交BC于D,则 .
16.(2023·全国·统考高考真题)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则 .
17.(2023·全国·统考高考真题)若,则 .
18.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
三、双空题
19.(2021·浙江·统考高考真题)在中,,M是的中点,,则 , .
20.(2022·北京·统考高考真题)若函数的一个零点为,则 ; .
21.(2023·北京·统考高考真题)已知命题若为第一象限角,且,则.能说明p为假命题的一组的值为 , .
22.(2023·天津·统考高考真题)在中,,,点为的中点,点为的中点,若设,则可用表示为 ;若,则的最大值为 .
参考答案:
1.AC
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
2.AD
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得:,所以,,
即,
又,所以时,,故.
对A,当时,,由正弦函数图象知在上是单调递减;
对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
对C,当时,,,直线不是对称轴;
对D,由得:,
解得或,
从而得:或,
所以函数在点处的切线斜率为,
切线方程为:即.
故选:AD.
3.AC
【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
【详解】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
4.(满足即可)
【分析】根据在单位圆上,可得关于轴对称,得出求解.
【详解】与关于轴对称,
即关于轴对称,
,
则,
当时,可取的一个值为.
故答案为:(满足即可).
5.25
【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.
【详解】由题意可得,大正方形的边长为:,
则其面积为:,
小正方形的面积:,
从而.
故答案为:25.
6.
【分析】首先确定函数的解析式,然后求解的值即可.
【详解】由题意可得:,
当时,,
令可得:,
据此有:.
故答案为:.
【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
7.2
【分析】先根据图象求出函数的解析式,再求出的值,然后求解三角不等式可得最小正整数或验证数值可得.
【详解】由图可知,即,所以;
由五点法可得,即;
所以.
因为,;
所以由可得或;
因为,所以,
方法一:结合图形可知,最小正整数应该满足,即,
解得,令,可得,
可得的最小正整数为2.
方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.
故答案为:2.
【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解,根据特殊点求解.
8.
【分析】由三角形面积公式可得,再结合余弦定理即可得解.
【详解】由题意,,
所以,
所以,解得(负值舍去).
故答案为:.
9.
【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求.
【详解】[方法一]:利用辅助角公式处理
∵,∴,即,
即,令,,
则,∴,即,
∴ ,
则.
故答案为:;.
[方法二]:直接用同角三角函数关系式解方程
∵,∴,即,
又,将代入得,解得,
则.
故答案为:;.
10..
【分析】根据题中所给的公式代值解出.
【详解】因为,所以.
故答案为:.
11./
【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.
【详解】[方法一]:余弦定理
设,
则在中,,
在中,,
所以
,
当且仅当即时,等号成立,
所以当取最小值时,.
故答案为:.
[方法二]:建系法
令 BD=t,以D为原点,OC为x轴,建立平面直角坐标系.
则C(2t,0),A(1,),B(-t,0)
[方法三]:余弦定理
设BD=x,CD=2x.由余弦定理得
,,
,,
令,则,
,
,
当且仅当,即时等号成立.
[方法四]:判别式法
设,则
在中,,
在中,,
所以,记,
则
由方程有解得:
即,解得:
所以,此时
所以当取最小值时,,即.
12.
【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;
【详解】解: 因为,(,)
所以最小正周期,因为,
又,所以,即,
又为的零点,所以,解得,
因为,所以当时;
故答案为:
13.2
【分析】利用偶函数的性质得到,从而求得,再检验即可得解.
【详解】因为为偶函数,定义域为,
所以,即,
则,故,
此时,
所以,
又定义域为,故为偶函数,
所以.
故答案为:2.
14.
【分析】设,依题可得,,结合的解可得,,从而得到的值,再根据以及,即可得,进而求得.
【详解】设,由可得,
由可知,或,,由图可知,
,即,.
因为,所以,即,.
所以,
所以或,
又因为,所以,.
故答案为:.
【点睛】本题主要考查根据图象求出以及函数的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.
15.
【分析】方法一:利用余弦定理求出,再根据等面积法求出;
方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.
【详解】
如图所示:记,
方法一:由余弦定理可得,,
因为,解得:,
由可得,
,
解得:.
故答案为:.
方法二:由余弦定理可得,,因为,解得:,
由正弦定理可得,,解得:,,
因为,所以,,
又,所以,即.
故答案为:.
【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.
16.2
【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解.
【详解】如图,将三棱锥转化为直三棱柱,
设的外接圆圆心为,半径为,
则,可得,
设三棱锥的外接球球心为,连接,则,
因为,即,解得.
故答案为:2.
【点睛】方法点睛:多面体与球切、接问题的求解方法
(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;
(2)若球面上四点P、A、B、C构成的三条线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解;
(3)正方体的内切球的直径为正方体的棱长;
(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;
(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
17.
【分析】根据同角三角关系求,进而可得结果.
【详解】因为,则,
又因为,则,
且,解得或(舍去),
所以.
故答案为:.
18.
【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.
【详解】因为,所以,
令,则有3个根,
令,则有3个根,其中,
结合余弦函数的图像性质可得,故,
故答案为:.
19.
【分析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.
【详解】由题意作出图形,如图,
在中,由余弦定理得,
即,解得(负值舍去),
所以,
在中,由余弦定理得,
所以;
在中,由余弦定理得.
故答案为:;.
20. 1
【分析】先代入零点,求得A的值,再将函数化简为,代入自变量,计算即可.
【详解】∵,∴
∴
故答案为:1,
21.
【分析】根据正切函数单调性以及任意角的定义分析求解.
【详解】因为在上单调递增,若,则,
取,
则,即,
令,则,
因为,则,
即,则.
不妨取,即满足题意.
故答案为:.
22.
【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
【详解】空1:因为为的中点,则,可得,
两式相加,可得到,
即,则;
空2:因为,则,可得,
得到,
即,即.
于是.
记,
则,
在中,根据余弦定理:,
于是,
由和基本不等式,,
故,当且仅当取得等号,
则时,有最大值.
故答案为:;.
相关试卷
这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编-数列(选择,共27页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。
这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解,共33页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份高考数学全国卷(甲卷、乙卷、新课标I、新课标II)3年(2021-2023)真题分类汇编三角函数与解 (2),共23页。试卷主要包含了解答题等内容,欢迎下载使用。