人教版九年级上册24.2.2 直线和圆的位置关系一等奖ppt课件
展开1.会判定一条直线是否是圆的切线并会过圆上一点作 圆的切线.2.理解并掌握圆的切线的判定定理及性质定理.(重点)3.能运用圆的切线的判定定理和性质定理解决问题. (难点)
根据图形,回答以下问题:
(1) 在图中,直线l分别与⊙O的是什么关系?(2)在上边三个图中,哪个图中的直线l 是圆的切线? 你是怎样判断的?
转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?
都是沿切线方向飞出的.
生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.
问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?
观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?
经过半径的外端并且垂直于这条半径的直线是圆的切线.
判一判:下列各直线是不是圆的切线?如果不是,请说明为什么?
(1)不是,因为没有垂直.
(2),(3)不是,因为没有经过半径的外端点.
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;
2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;
3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
例1 如图,线段AB是☉O的直径,直线AC与AB交于点A,∠ABC=45°,且AB=AC.求证:AC是☉O的切线.
分析:直线AC经过半径的一端,因此只要证OA垂直于AC即可.
证明:∵AB=AC,∠ABC=45°,
∴∠ACB=∠ABC=45°.
∴∠BAC=180°-∠ABC-ACB=90°,即AB⊥AC.
∴ AC是☉O的切线.
例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.
分析:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可.
证明:连接OC(如图).∵ OA=OB,CA=CB, ∴ OC是等腰△OAB底边AB上的中线. ∴ AB⊥OC.∵OC是⊙O的半径,∴ AB是⊙O的切线.
当已知直线过圆上的一点时,连接圆心和该点得到圆的半径,然后证明直线与这条半径垂直,即可得出已知直线为圆的切线.
例3 如图,在Rt△ABC 中,∠ABC =90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC 是⊙O 的切线.
证明:如图,过D作DE ⊥AC于E.
∵∠ABC =90°,∴DB ⊥ AB.
又∵AD平分∠BAC,DE ⊥AC,
∴AC 是⊙O 的切线.
当未提及直线与圆有公共点时,过圆心作直线的垂线,证明垂线段等于半径,即可得出已知直线为圆的切线.
(1)有交点,连半径,证垂直;
证切线时辅助线的添加方法
(2)无交点,作垂直,证半径.
1. 如图 所示,线段 AB 经过圆心 O,交⊙O 于点 A、C,∠BAD=∠B=30°,边 BD 交圆于点 D.BD 是⊙O 的切线吗?为什么?
解:BD 是⊙O 的切线.
连接 OD, ∵OD=OA,∠A=30°, ∴∠DOB=60°.
∵∠B=30°,∴∠ODB=90°.∴BD 是⊙O 的切线.
2. 如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.
分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.
思考:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?
∵直线l是⊙O 的切线,A是切点,
(1)假设AB与CD不垂直,过点O作 一条直径垂直于CD,垂足为M;
理由是:直径AB与直线CD要么垂直,要么不垂直.
(2)则OM
例4 如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB.若∠B=25°,求∠P的度数.
∵∠AOP=2∠B=50°,
∴∠P=180°-90°-50°=40°.
利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.
例5 如图,△ABC 为等腰三角形,O 是底边BC的中点,腰AB 与⊙O相切于点D.求证:AC 是⊙O 的切线.
分析:判定切线,无切点,则作垂直(OE),证半径(OE=OD);由AB与⊙O相切于点D,得OD⊥AB;再根据等腰三角形的性质以及角平分线的性质,即可得出结论.
证明:如图,连接OD,OA,过O 作OE ⊥AC于E.
∵⊙O 与AB 相切于D,∴OD ⊥ AB.
又∵△ABC 为等腰三角形,O 是BC 的中点,
∴AO 平分∠BAC.
∵OD 是⊙O 半径,OE =OD,OE ⊥ AC,
∴AC 是⊙O 的切线.
又OD ⊥AB ,OE⊥AC,
有切线时常用辅助线添加方法
见切点,连半径,得垂直.
(1)经过圆心且垂直于切线的直线必经过切点;
(2)经过切点且垂直于切线的直线必经过圆心.
分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;
(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.
(1)求证:△ACB≌△APO;
在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).
证明:∵PA为⊙O的切线,A为切点,
又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形. ∴AB=AO,∠ABO=60°.
又∵BC为⊙O的直径,∴∠BAC=90°.
(2)若AP= ,求⊙O的半径.
∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.
3. 如图所示,点 A 是⊙O 外一点,OA 交⊙O 于点 B,AC 是⊙O 的切线,切点是 C,且∠A=30°,BC=1.求⊙O 的半径.
解:连接 OC. 因为AC 是⊙O 的切线,所以∠OCA =90°. 又∵ ∠A=30°, ∴ ∠COB=60° ∴ OBC 是等边三角形. ∴ OB=BC=1,即⊙O 的半径为 1.
如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由;
解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;
1.(3分)下列直线中能判定为圆的切线的是( )A.与圆有公共点的直线B.过圆的半径外端的直线C.垂直于圆的半径且与圆有公共点的直线D.过半径的外端且与半径垂直的直线
2.(4分)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC是⊙A切线的是( )A.∠A=50°,∠C=40° B.∠B-∠C=∠AC.AB2+BC2=AC2 D.AC的中点在⊙A上
3.(4分)如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )A.DE=DO B.AB=ACC.CD=DB D.AC∥OD
解:(1)证明:连结OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.∵CE=CB,∴∠CAE=∠CAB.∵∠BCD=∠CAE,∴∠CAB=∠BCD.∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线
经过圆的半径的外端且垂直于这条半径的直线是圆的切线
证切线时常用辅助线添加方法: ①有公共点,连半径,证垂直;②无公共点,作垂直,证半径.
圆的切线垂直于经过切点的半径
有切线时常用辅助线添加方法: 见切线,连切点,得垂直.
九年级上册24.2.2 直线和圆的位置关系图片课件ppt: 这是一份九年级上册24.2.2 直线和圆的位置关系图片课件ppt,共18页。PPT课件主要包含了CONTENTS,切线长,切线长定理,巩固应用等内容,欢迎下载使用。
人教版九年级上册24.2.2 直线和圆的位置关系课文内容ppt课件: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系课文内容ppt课件,共12页。PPT课件主要包含了知识回顾,新知学习,切线的判定定理,对定理的理解,联系生活,证明连接OC,∴OC⊥AB,例题赏析,∴TA⊥OA,∴l1⊥OA等内容,欢迎下载使用。
人教版九年级上册24.2.2 直线和圆的位置关系课文配套课件ppt: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系课文配套课件ppt,共22页。PPT课件主要包含了●学习目标,针对训练,BC⊥AB等内容,欢迎下载使用。