- 专题1.4 解直角三角函数应用(专项训练)-2023-2024学年九年级数学下册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.4 解直角三角形的应用-坡度坡角问题(能力提升)-2023-2024学年九年级数学下册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.5 解直角三角形的应用-仰角俯角(能力提升)-2023-2024学年九年级数学下册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.6 解直角三角函数应用-仰角俯角问题(专项训练)-2023-2024学年九年级数学下册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题1.6 解直角三角形的应用-方向角问题(能力提升)-2023-2024学年九年级数学下册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
九年级下册第一章 直角三角形的边角关系5 三角函数的应用精品综合训练题
展开专题1.5 解直角三角函数应用-坡度坡角应用(专项训练)
1.(•济阳区期末)如图,一山坡的坡度i=1:,小明从A处爬到B处所走的直线距离AB=100米,则他在垂直方向上升的高度CB为 米.
- (2021秋•南召县月考)如图所示,某商场要在一楼和二楼之间搭建扶梯BC,已知一楼与二楼之间的地面高度差为3.5米,扶梯BC的坡度,则扶梯BC的长度
为 米.
3.(2022•瑶海区三模)图1、图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED与斜坡AB垂直,大腿EF与斜坡AB平行,且G、E、D三点共线,若雪仗EM长为1m,EF=0.4m,∠EMD=30°,∠GFE=62°,求此刻运动员头部G到斜坡AB的高度h(精确到0.1m,参考数据:sin62°≈0.88、cos62°≈0.47、tan62°≈1.88)
4.(2022•太平区一模)某商场从安全和便利的角度出发,提升顾客的购物体验,准备将自动扶梯由原来的阶梯式改造成斜坡式.如图,已知商场的层高AD为6m,坡角∠ABD为30°,改造后的斜坡式自动扶梯的坡角∠ACB为16°,请你计算改造后的斜坡式自动扶梯AC相比改造前AB增加的长度.(结果精确到0.1m,参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)
5.(2022春•北碚区校级月考)如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)
(1)求点D到纪念馆AB的水平距离;
(2)求纪念馆AB的高度约为多少米?
6.(2022•黄岩区一模)如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.
7.(2022•铁岭模拟)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).
(1)求这个车库的高度AB;
(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).
(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
8.(2022•瑶海区二模)2021年底中国高铁运营里程数已达4万公里,中国高铁发展速度之快、质量之高令全世界惊叹,是当之无愧的“国家名片”.如图所示某条高铁路基的横断面是四边形ABCD,AD∥BC,路基顶BC宽10米,斜坡AB长为15米,斜坡AB的坡角α是32°,斜坡CD的坡度i=1:2.5,求路基底AD的长.(结果精确到1米,参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
9.(2022春•渝中区校级月考)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.
(1)真空管上端B到水平线AD的距离.
(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).
(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈0.4)
10.(2022•营口)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)
11.(2022•鄂州)亚洲第一、中国唯一的航空货运枢纽——鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°.若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:
(1)两位市民甲、乙之间的距离CD;
(2)此时飞机的高度AB.(结果保留根号)
12.(2021•内江)在一次课外活动中,某数学兴趣小组测量一棵树CD的高度.如图所示,测得斜坡BE的坡度i=1:4,坡底AE的长为8米,在B处测得树CD顶部D的仰角为30°,在E处测得树CD顶部D的仰角为60°,求树高CD.(结果保留根号)
13.(2021•郴州)如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.
(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)
专题1.7 解直角三角函数应用-方向角问题(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版): 这是一份专题1.7 解直角三角函数应用-方向角问题(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版),文件包含专题17解直角三角函数应用-方向角问题专项训练原卷版docx、专题17解直角三角函数应用-方向角问题专项训练解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题1.5 解直角三角函数应用-坡度坡角应用(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版): 这是一份专题1.5 解直角三角函数应用-坡度坡角应用(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版),文件包含专题15解直角三角函数应用-坡度坡角应用专项训练原卷版docx、专题15解直角三角函数应用-坡度坡角应用专项训练解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专题1.4 解直角三角函数应用(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版): 这是一份专题1.4 解直角三角函数应用(专项训练)-2023-2024学年九年级数学下册重点专题解读+训练(北师大版),文件包含专题14解直角三角函数应用专项训练原卷版docx、专题14解直角三角函数应用专项训练解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。