搜索
    上传资料 赚现金
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      高中数学新教材选择性必修第二册 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用.pptx
    • 高中数学新教材选择性必修第二册 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用(教师版).docx
    • 高中数学新教材选择性必修第二册 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用(学生版).docx
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用01
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用02
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用03
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用04
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用05
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用06
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用07
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用08
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用01
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用02
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用03
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用01
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用02
    高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用03
    还剩58页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列精品课件ppt

    展开
    这是一份高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列精品课件ppt,文件包含高中数学新教材选择性必修第二册第4章432第2课时等比数列前n项和的性质及应用pptx、高中数学新教材选择性必修第二册第4章432第2课时等比数列前n项和的性质及应用教师版docx、高中数学新教材选择性必修第二册第4章432第2课时等比数列前n项和的性质及应用学生版docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。


    第4章 4.3.2 第2课时 等比数列前n项和的性质及应用
    高中数学新教材选择性必修第二册
    高考政策|高中“新”课程,新在哪里?
    1、科目变化:外语语种增加,体育与健康必修。第一,必修课程,由国家根据学生全面发展需要设置,所有学生必须全部修习、全部考试。第二,选择性必修课程,由国家根据学生个性发展和升学考试需要设置。第三,选修课程,由学校根据实际情况统筹规划开设,学生自主选择修习。2、课程类别变化,必修课程、选择性必修课程将成为高考考查范围。在毕业总学分不变的情况下,对原必修课程学分进行重构,由必修课程学分、选择性必修课程学分组成,适当增加选修课程学分。3、学时和学分变化,高中生全年假期缩减到11周。4、授课方式变化,选课制度将全面推开。5、考试方式变化,高考统考科目由教育部命题,学业水平合格性、等级性考试由各省命题。
    1.熟练应用等比数列前n项和公式的性质解题.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的 问题.
    同学们,前面我们就用等差数列中的性质,类比出了等比数列的性质,由此还得出了“类比能使人智慧”这一重要结论,今天我们再进一步扩大同学们的智慧,继续通过类比,看我们能得出等比数列前n项和的哪些性质.
    随堂演练
    课时对点练
    一、等比数列前n项和公式的灵活应用
    二、等比数列中的片段和问题
    三、等比数列前n项和公式的实际应用
    一、等比数列前n项和公式的灵活应用
    问题1 类比等差数列前n项和性质中的奇数项、偶数项的问题,等比数列是否也有相似的性质?
    提示 若等比数列{an}的项数有2n项,则其偶数项和为S偶=a2+a4+…+a2n,其奇数项和为S奇=a1+a3+…+a2n-1,容易发现两列式子中对应项之间存在联系,
    若等比数列{an}的项数有2n+1项,则其偶数项和为S偶=a2+a4+…+a2n,
    其奇数项和为S奇=a1+a3+…+a2n-1+a2n+1,从项数上来看,奇数项比偶数项多了一项,于是我们有S奇-a1=a3+…+a2n-1+a2n+1=a2q+a4q+…+a2nq=qS偶,即S奇=a1+qS偶.
    若{an}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:
    例1 (1)已知等比数列{an}共有2n项,其和为-240,且(a1+a3+…+a2n-1)-(a2+a4+…+a2n)=80,则公比q=____.
    2
    解析 由题意知S奇+S偶=-240,S奇-S偶=80,∴S奇=-80,S偶=-160,
    (2)若等比数列{an}共有2n项,其公比为2,其奇数项和比偶数项和少100,则数列{an}的所有项之和为______.
    300
    反思感悟 处理等比数列前n项和有关问题的常用方法(1)若等比数列{an}共有2n项,要抓住 =q和S偶+S奇=S2n这一隐含特点;若等比数列{an}共有2n+1项,要抓住S奇=a1+qS偶和S偶+S奇=S2n+1这一隐含特点.要注意公比q=1和q≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元.(2)灵活运用等比数列前n项和的有关性质.
    跟踪训练1 (1)若等比数列{an}共有奇数项,其首项为1,其偶数项和为170,奇数项和为341,则这个数列的公比为____,项数为____.
    2
    9
    解析 由性质S奇=a1+qS偶可知341=1+170q,所以q=2,
    即这个等比数列的项数为9.
    (2)一个项数为偶数的等比数列{an},全部各项之和为偶数项之和的4倍,前3项之积为64,则数列的通项公式an=_________________.
    解析 设数列{an}的首项为a1,公比为q,所有奇数项、偶数项之和分别记作S奇,S偶,由题意可知,S奇+S偶=4S偶,即S奇=3S偶.因为数列{an}的项数为偶数,
    又因为a1·a1q·a1q2=64,
    即a1=12,
    二、等比数列中的片段和问题
    问题2 你能否用等比数列{an}中的Sm,Sn来表示Sm+n?
    提示 思路一:Sm+n=a1+a2+…+am+am+1+am+2+…+am+n=Sm+a1qm+a2qm+…+anqm=Sm+qmSn.思路二:Sm+n=a1+a2+…+an+an+1+an+2+…+an+m=Sn+a1qn+a2qn+…+amqn=Sn+qnSm.
    问题3 类似于等差数列中的片段和的性质,在等比数列中,你能发现Sn,S2n-Sn,S3n-S2n…(n为偶数且q=-1除外)的关系吗?
    提示 Sn,S2n-Sn,S3n-S2n…仍成等比数列,证明如下:思路一:当q=1时,结论显然成立;
    故有(S2n-Sn)2=Sn(S3n-S2n),所以Sn,S2n-Sn,S3n-S2n成等比数列.思路二:由性质Sm+n=Sm+qmSn可知S2n=Sn+qnSn,故有S2n-Sn=qnSn,S3n=S2n+q2nSn,故有S3n-S2n=q2nSn,故有(S2n-Sn)2=Sn(S3n-S2n),所以Sn,S2n-Sn,S3n-S2n成等比数列.
    1.若{an}是公比为q的等比数列,则Sn+m=Sn+ (n,m∈N*).2.数列{an}为公比不为-1的等比数列(或公比为-1,且n不是偶数),Sn为其前n项和,则Sn,S2n-Sn, 仍构成等比数列.注意点:等比数列片段和性质的成立是有条件的,即Sn≠0.
    qnSm
    S3n-S2n
    例2 在等比数列{an}中,已知Sn=48,S2n=60,求S3n.
    解 方法一 ∵S2n≠2Sn,∴q≠1,由已知得
    方法二 ∵{an}为等比数列,显然公比不等于-1,∴Sn,S2n-Sn,S3n-S2n也成等比数列,∴(S2n-Sn)2=Sn(S3n-S2n),
    方法三 由性质Sm+n=Sm+qmSn可知S2n=Sn+qnSn,即60=48+48qn,
    反思感悟 处理等比数列前n项和有关问题的常用方法(1)充分利用Sm+n=Sm+qmSn和Sn,S2n-Sn,S3n-S2n…(n为偶数且q=-1除外)仍成等比数列这一重要性质,能有效减少运算.(2)运用等比数列的前n项和公式,要注意公比q=1和q≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元.
    跟踪训练2 已知等比数列{an}的前n项和为Sn,S4=1,S8=3,则a9+a10+a11+a12等于A.8 B.6 C.4 D.2

    解析 S4,S8-S4,S12-S8成等比数列.即1,2,a9+a10+a11+a12成等比数列.∴a9+a10+a11+a12=4.
    三、等比数列前n项和公式的实际应用
    例3 《算法统宗》是中国古代数学名著,程大位著,共17卷,书中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”大致意思是:有一个人要到距离出发地378里的地方,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那么该人第1天所走路程里数为A.96 B.126 C.192 D.252

    解析 由题意得,该人每天走的路程形成以a1为首项,以 为公比的等比数列,因为该人6天后到达目的地,则有
    解得a1=192,所以该人第1天所走路程里数为192.
    反思感悟 (1)解应用问题的核心是建立数学模型.(2)一般步骤:审题、抓住数量关系、建立数学模型.(3)注意问题是求什么(n,an,Sn).
    跟踪训练3 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____.
    3
    解析 设塔的顶层共有a1盏灯,则数列{an}是公比为2的等比数列,
    1.知识清单:(1)奇数项和、偶数项和的性质.(2)片段和性质.(3)等比数列前n项和的实际应用.2.方法归纳:公式法、分类讨论.3.常见误区:应用片段和性质时易忽略其成立的条件.
    1
    2
    3
    4
    1.设等比数列{an}的前n项和为Sn,若S10∶S5=1∶2,则S15∶S5等于A.3∶4 B.2∶3 C.1∶2 D.1∶3
    解析 在等比数列{an}中,S5,S10-S5,S15-S10,…成等比数列,因为S10∶S5=1∶2,

    1
    2
    3
    4

    解析 由a1a2a3=1得a2=1,
    1
    2
    3
    4
    3.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有1个这种细菌和200个这种病毒,问细菌将病毒全部杀死至少需要A.6秒钟 B.7秒钟 C.8秒钟 D.9秒钟

    1
    2
    3
    4
    解析 根据题意,每秒钟细菌杀死的病毒数成等比数列,设需要n秒细菌可将病毒全部杀死,则1+2+22+23+…+2n-1≥200,
    ∴2n≥201,结合n∈N*,解得n≥8,即至少需8秒细菌将病毒全部杀死.
    1
    2
    3
    4
    80
    解析 令X=a1+a3+…+a99=60,Y=a2+a4+…+a100,则S100=X+Y,
    所以Y=20,即S100=X+Y=80.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    1.已知一个等比数列的项数是偶数,其奇数项之和为1 011,偶数项之和为2 022,则这个数列的公比为A.8 B.-2 C.4 D.2

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    2.一个项数为偶数的等比数列,它的偶数项和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为A.6 B.8 C.10 D.12

    解析 设等比数列的项数为2n项,所有奇数项之和为S奇,所有偶数项之和为S偶,
    中间两项的和为an+an+1=2n-1+2n=24,解得n=4,所以项数为8.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 易知q≠-1,因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以8(S9-S6)=1,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    4.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为A.1.14a B.11×(1.15-1)aC.1.15a D.10×(1.16-1)a
    解析 从今年起到第5年,这个厂的总产值为a×1.1+a×1.12+a×1.13+a×1.14+a×1.15

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 5斗=50升,设羊、马、牛的主人应偿还粟的量分别为a1,a2,a3,由题意可知a1,a2,a3构成公比为2的等比数列,且S3=50,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    6.(多选)下列结论不正确的是A.若一个数列从第二项起每一项与它的前一项的差都是同一个常数,则 这个数列是等差数列B.等差数列的前n项和公式是常数项为0的二次函数C.等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列D.如果数列{an}的前n项和为Sn,则对∀n∈N*,都有an+1=Sn+1-Sn


    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 对于A选项,根据等差数列的定义可知A选项正确;对于B选项,对任意n∈N*,an=1,则数列{an}为等差数列,且该数列的前n项和Sn=n,B选项错误;
    所以Sn=S2n-Sn=S3n-S2n=0,此时,Sn,S2n-Sn,S3n-S2n不成等比数列,C选项错误;对于D选项,对任意的n∈N*,Sn+1=(a1+a2+…+an)+an+1=Sn+an+1,可得an+1=Sn+1-Sn,D选项正确.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    7.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于____.
    6
    解析 每天植树的棵数构成以2为首项,2为公比的等比数列,
    由2n+1-2≥100,得2n+1≥102.由于26=64,27=128,则n+1≥7,即n≥6.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    8.设等比数列{an}中,a1+a2+a3=3,a4+a5+a6=81,则数列{an}的公比为_____.
    3
    解析 易得a4+a5+a6=q3(a1+a2+a3),故q3=27,则q=3.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    9.一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解 方法一 设原等比数列的公比为q,项数为2n(n∈N*).由已知a1=1,q≠1,有
    由②÷①,得q=2,
    故公比为2,项数为8.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    方法二 ∵S偶=a2+a4+…+a2n=a1q+a3q+…+a2n-1q=(a1+a3+…+a2n-1)q=S奇·q,
    ∴2n=256,∴n=8.即公比q=2,项数n=8.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    10.已知等比数列{an}的前n项和为Sn,且满足S3=7,S6=63.(1)求数列{an}的通项公式;
    解 由题意知S6≠2S3,q≠1,由等比数列的前n项和等距分段的性质知,
    ∴an=2n-1.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    (2)若bn=an+log2an,求数列{bn}的前n项和Tn.
    解 由(1)知bn=2n-1+n-1,∴Tn=(1+2+…+2n-1)+[1+2+…+(n-1)]
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    11.已知数列{an}是等比数列,Sn为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12等于A.40 B.60 C.32 D.50
    解析 由等比数列的性质可知,数列S3,S6-S3,S9-S6,S12-S9是等比数列,即数列4,8,S9-S6,S12-S9是等比数列,因此S12=4+8+16+32=60.

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    12.若数列{xn}满足lg xn+1=1+lg xn(n∈N*),且x1+x2+…+x100=100,则lg(x101+x102+…+x200)的值等于A.200 B.120 C.110 D.102

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 因为lg xn+1=1+lg xn,
    所以数列{xn}是等比数列,公比为10,所以lg(x101+x102+…+x200)=lg[(x1+x2+…+x100)·10100]=lg(100×10100)=102.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 设数列{an}共有(2m+1)项,由题意得
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    所以Tn=a1·a2·…·an
    故当n=1或2时,Tn取最大值2.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    14.如图,画一个边长为4 cm的正方形,再将这个正方形各边的中点相连得到第2个正方形,以此类推,这样一共画了5个正方形,则这5个正方形的面积的和是_____ cm2.
    31
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    解析 令x=n,y=1,则f(n)·f(1)=f(n+1),又an=f(n),
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    证明 方法一 设此等比数列的公比为q,首项为a1,当q=1时,Sn=na1,S2n=2na1,S3n=3na1,
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    方法二 根据等比数列的性质有S2n=Sn+qnSn=Sn(1+qn),S3n=Sn+qnSn+q2nSn,
    课程结束
    高中数学新教材选择性必修第二册
    相关课件

    高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列示范课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第二册4.3 等比数列示范课课件ppt,共27页。

    人教A版 (2019)选择性必修 第二册4.3 等比数列精品ppt课件: 这是一份人教A版 (2019)选择性必修 第二册4.3 等比数列精品ppt课件,文件包含高中数学新教材选择性必修第二册第4章432第1课时等比数列的前n项和公式pptx、高中数学新教材选择性必修第二册第4章432第1课时等比数列的前n项和公式教师版docx、高中数学新教材选择性必修第二册第4章432第1课时等比数列的前n项和公式学生版docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    人教A版 (2019)选择性必修 第二册4.3 等比数列备课课件ppt: 这是一份人教A版 (2019)选择性必修 第二册4.3 等比数列备课课件ppt,共55页。PPT课件主要包含了知识点,类型1类型2类型3等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学新教材选择性必修第二册课件+讲义 第4章 4.3.2 第2课时 等比数列前n项和的性质及应用
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map