数学华师大版第17章 函数及其图象17.3 一次函数1. 一次函数课时练习
展开一次函数巩固练习
一、选择题:
1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( )
(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3
2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( )
(A)一象限 (B)二象限 (C)三象限 (D)四象限
3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )
(A)4 (B)6 (C)8 (D)16
4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )
(A)y1>y2 (B)y1=y2
(C)y1
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限.
(A)一 (B)二 (C)三 (D)四
7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )
(A)y随x的增大而增大 (B)y随x的增大而减小
(C)图像经过原点 (D)图像不经过第二象限
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
9.要得到y=-x-4的图像,可把直线y=-x( ).
(A)向左平移4个单位 (B)向右平移4个单位
(C)向上平移4个单位 (D)向下平移4个单位
10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( )
(A)m>- (B)m>5 (C)m=- (D)m=5
11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ).
(A)k< (B)
12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )
(A)4条 (B)3条 (C)2条 (D)1条
13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是( )
(A)-4 (C)-4 14.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )
(A)1个 (B)2个 (C)3个 (D)4个
15.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( )
(A)2个 (B)4个 (C)6个
16.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过( )
(A)第1、2、4象限 (B)第1、2、3象限
(C)第2、3、4象限 (D)第1、3、4象限
二、填空题
1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.
2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.
3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.
4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.
5.函数y=-3x+2的图像上存在点P,使得P到x轴的距离等于3,则点P的坐标为__________.
6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.
7.y=x与y=-2x+3的图像的交点在第_________象限.
8.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,则一次函数的解析式为________.
三、解答题
1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.
2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.
(1)写出y与x之间的函数关系式;
(2)如果x的取值范围是1≤x≤4,求y的取值范围.
3.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时此时离家多远(2)求小明出发两个半小时离家多远(3)求小明出发多长时间距家12千米
3.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函解析式.
4.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.
5.已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.
13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是元.
(1)求x、y的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.
14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.
某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:
用水量(m3)
交水费(元)
一月份
9
9
二月份
15
19
三月
22
33
根据上表的表格中的数据,求a、b、c.
答案:
1.B 2.B 3.A 4.A
5.B 提示:由方程组 的解知两直线的交点为(1,a+b),
而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,
故图C不对;图D中交点纵坐标是大于a,小于b的数,不等于a+b,
故图D不对;故选B.
6.B 提示:∵直线y=kx+b经过一、二、四象限,∴ 对于直线y=bx+k,
∵ ∴图像不经过第二象限,故应选B.
7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,
∵k=-1<0,∴y随x的增大而减小,故B正确.
∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.
∵k<0,b=2>0,∴其图像经过第二象限,故D错误.
8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,
将y=-x的图像向下平移4个单位就可得到y=-x-4的图像.
10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,
∴ ∴m=-,故应选C.
11.B 12.C 13.B 提示:∵=p,
∴①若a+b+c≠0,则p==2;
②若a+b+c=0,则p==-1,
∴当p=2时,y=px+q过第一、二、三象限;
当p=-1时,y=px+p过第二、三、四象限,
综上所述,y=px+p一定过第二、三象限.
14.D 15.D 16.A 17.C 18.C 19.C
20.A 提示:依题意,△=p2+4│q│>0, k·b<0,
一次函数y=kx+b中,y随x的增大而减小一次函数的图像一定经过一、二、四象限,选A.
二、
1.-5≤y≤19 2.2
5.(,3)或(,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3
当y=3时,x=;当y=-3时,x=;∴点P的坐标为(,3)或(,-3).
提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.
6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.
∵直线y=kx+b与y=x+1平行,∴k=1,
∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.
7.解方程组
∴两函数的交点坐标为(,),在第一象限.
8.. 9.y=2x+7或y=-2x+3 10.
11.据题意,有t=k,∴k=t.
因此,B、C两个城市间每天的电话通话次数为TBC=k×.
三、
1.(1)由题意得:
∴这个一镒函数的解析式为:y=-2x+4(函数图象略).
(2)∵y=-2x+4,-4≤y≤4,
∴-4≤-2x+4≤4,∴0≤x≤4.
2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,
则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,
得 解得k=-2,p=5,
∴y与x之间的函数关系是y=-2x+5;
(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.
∴当1≤x≤4时,-3≤y≤3.
另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.
3.(1)设一次函数为y=kx+b,将表中的数据任取两取,
不防取(,)和(,)代入,得
∴一次函数关系式为y=+.
(2)当x=时,y=×+=.∵77≠,∴不配套.
4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.
(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),
代入得:y=15x-15,(2≤x≤3).
当x=时,y=(千米)
答:出发两个半小时,小明离家22.5千米.
(3)设过E、F两点的直线解析式为y=k2x+b2,
由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)
过A、B两点的直线解析式为y=k3x,
∵B(1,15),∴y=15x.(0≤x≤1),
分别令y=12,得x=(小时),x=(小时).
答:小明出发小时或小时距家12千米.
5.设正比例函数y=kx,一次函数y=ax+b,
∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,
∵S△AOB=6,∴AO·│yB│=6,
∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,得k=1.
把点A(-6,0)、B(-2,-2)代入y=ax+b,得
∴y=x,y=-x-3即所求.
6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,
∴OD=OA=1,CA=CD,∴CA+CB=DB== 5.
7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;
当x<1,y≥1时,y=x+1;当x<1,y<1时,y=-x+1.
由此知,曲线围成的图形是正方形,其边长为,面积为2.
8.∵点A、B分别是直线y=x+与x轴和y轴交点,
∴A(-3,0),B(0,),
∵点C坐标(1,0)由勾股定理得BC=,AB=,
设点D的坐标为(x,0).
(1)当点D在C点右侧,即x>1时,
∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,
∴,∴ ①
∴,∴8x2-22x+5=0,
∴x1=,x2=,经检验:x1=,x2=,都是方程①的根,
∵x=,不合题意,∴舍去,∴x=,∴D点坐标为(,0).
设图象过B、D两点的一次函数解析式为y=kx+b,
∴所求一次函数为y=-x+.
(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,
∴,∴ ②
∴8x2-18x-5=0,∴x1=-,x2=,经检验x1=,x2=,都是方程②的根.
∵x2=不合题意舍去,∴x1=-,∴D点坐标为(-,0),
∴图象过B、D(-,0)两点的一次函数解析式为y=4x+,
综上所述,满足题意的一次函数为y=-x+或y=4x+.
9.直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),
∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,
∴cot∠ODC=cot∠OAB,即,
∴OD==8.∴点D的坐标为(0,8),
设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2.
∴直线CD:y=-2x+8,由
∴点E的坐标为(,-).
10.把x=0,y=0分别代入y=x+4得
∴A、B两点的坐标分别为(-3,0),(0,4).
∵OA=3,OB=4,∴AB=5,BQ=4-k,QP=k+1.当QQ′⊥AB于Q′(如图),
当QQ′=QP时,⊙Q与直线AB相切.由Rt△BQQ′∽Rt△BAO,得
.∴,∴k=.
∴当k=时,⊙Q与直线AB相切.
11.(1)y=200x+74000,10≤x≤30
(2)三种方案,依次为x=28,29,30的情况.
12.设稿费为x元,∵x>7104>400,
∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x···x=x=7104.
∴x=7104×=8000(元).答:这笔稿费是8000元.
13.(1)设预计购买甲、乙商品的单价分别为a元和b元,
则原计划是:ax+by=1500,①.
由甲商品单价上涨元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+)(x-10)+(b+1)y=1529,②
再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③.
由①,②,③得: ④-⑤×2并化简,得x+2y=186.
(2)依题意有:205<2x+y<210及x+2y=186,得54
14.设每月用水量为xm3,支付水费为y元.则y=
由题意知:0
将x=15,x=22分别代入②式,得 解得b=2,2a=c+19, ⑤.
再分析一月份的用水量是否超过最低限量,不妨设9>a,
将x=9代入②,得9=8+2(9-a)+c,即2a=c+17, ⑥.
⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,
∴c=1代入⑤式得,a=10.
综上得a=10,b=2,c=1. (1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,
发往E市的机器台数分别为10-x,10-x,2x-10.
于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.
又
∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).
由上式可知,W是随着x的增加而减少的,
所以当x=9时,W取到最小值10000元;
当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,
发往E市的机器台数分别是10-x,10-y,x+y-10,
于是W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)
=-500x-300y-17200.
又
∴W=-500x-300y+17200,且(x,y为整数).
W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800.
又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,
所以,W的最大值为14200.
湘教版八年级下册4.2 一次函数课后复习题: 这是一份湘教版八年级下册4.2 一次函数课后复习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
华师大版八年级下册19.3 正方形精练: 这是一份华师大版八年级下册19.3 正方形精练,共5页。试卷主要包含了性质,判定等内容,欢迎下载使用。
初中1. 反比例函数复习练习题: 这是一份初中1. 反比例函数复习练习题,共11页。