终身会员
搜索
    上传资料 赚现金
    2023九年级数学下册第一章直角三角形的边角关系第六节利用三角函数测高课时练习新版北师大版
    立即下载
    加入资料篮
    2023九年级数学下册第一章直角三角形的边角关系第六节利用三角函数测高课时练习新版北师大版01
    2023九年级数学下册第一章直角三角形的边角关系第六节利用三角函数测高课时练习新版北师大版02
    2023九年级数学下册第一章直角三角形的边角关系第六节利用三角函数测高课时练习新版北师大版03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版九年级下册6 利用三角函数测高复习练习题

    展开
    这是一份初中数学北师大版九年级下册6 利用三角函数测高复习练习题,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    第六节 利用三角函数测高
    一、单选题(共15题)
    1.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是(  )

    A.2海里 B.2sin55°海里
    C.2cos55°海里 D.2tan55°海里
    答案:C
    解析:解答:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.

    ∵AB∥NP,
    ∴∠A=∠NPA=55°.
    在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,
    ∴AB=AP•cos∠A=2cos55°海里.
    故选C.
    分析: 首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里
    2.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为(  )

    A.30海里 B.30海里 C.60海里 D.30海里
    答案:A
    解析:解答: 过点P作PC⊥AB于点C.

    在Rt△PAC中,∵PA=60海里,∠PAC=30°,
    ∴CP=AP=30海里.
    在Rt△PBC中,∵PC=30海里,∠PBC=∠BPC=45°,
    ∴PB=PC=30海里.
    即海轮所在的B处与灯塔P的距离为30海里.
    故选:A.
    分析: 此题主要考查了解直角三角形的应用-方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线
    3.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为(  )

    A.4km B.(2+)km C.2km D.(4-)km
    答案:B
    解析:解答: 在CD上取一点E,使BD=DE,

    可得:∠EBD=45°,AD=DC,
    ∵从B测得船C在北偏东22.5°的方向,
    ∴∠BCE=∠CBE=22.5°,
    ∴BE=EC,
    ∵AB=2,
    ∴EC=BE=2,
    ∴BD=ED=
    ∴DC=2+
    故选:B.
    分析: 根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案
    4.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为(  )

    A.40海里 B.40海里 C.80海里 D.40海里
    答案:A
    解析:解答: 过点P作PC⊥AB于点C,

    由题意可得出:∠A=30°,∠B=45°,AP=80海里,
    故CP=AP=40(海里),
    则PB= =40(海里).
    故选:A.
    分析: 过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案
    5.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为(  )

    A.4km B.2km C.2km D.(+1)km
    答案:C
    解析:解答: 如图,过点A作AD⊥OB于D.

    在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,
    ∴AD= OA=2.
    在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
    ∴BD=AD=2,
    ∴AB=AD=2
    即该船航行的距离(即AB的长)为2km.
    故选:C.
    分析: 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键
    6.如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为(  )

    A.100 B.200 C.100 D.200
    答案:B
    解析:解答: 如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,
    ∴∠C=180°-∠CAB-∠ABC=30°,
    ∴∠CAB=∠C=30°,
    ∴BC=AB=200m,
    即景点B、C相距的路程为200m.
    故选B.
    分析: 先根据方向角的定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°-∠CAB-∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=200m
    7.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为(  )

    A.2km B.3km C.km D.3km
    答案:B
    解析:解答:过C作CE⊥BD于E,则CE=AB.

    直角△CED中,∠ECD=30°,CD=6,
    则CE=CD•cos30°=3=AB.
    所以AB=3(km).
    故选B.
    分析: 过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到AB的长
    8. 如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为(  )海里.

    A.40+40 B.80 C.40+20 D.80
    答案:A
    解析:解答: 根据题意得:PA=40海里,∠A=45°,∠B=30°,
    ∵在Rt△PAC中,AC=PC=PA•cos45°=40×=40(海里),
    在Rt△PBC中,BC= (海里),
    ∴AB=C+BC=40+40(海里).
    故选A.
    分析: 首先由题意可得:PA=40海里,∠A=45°,∠B=30°,然后分别在Rt△PAC中与Rt△PBC中,利用三角函数的知识分别求得AC与BC的长,继而求得答案
    9.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C地,此时小军离A地(  )
    A.5m B.10m C.15m D.10m
    答案:D
    解析:解答: 如图所示:在Rt△ABD和Rt△CDA中,

    ∵AD=AB•sin60°=5(m);
    BD=AB•cos60°=5,
    ∴CD=15.
    ∴AC= =10(m).
    故选:D.
    分析: 根据三角函数分别求AD,BD的长,从而得到CD的长.再利用勾股定理求AC的长即可
    10.某时刻海上点P处有一客轮,测得灯塔A位于P的北偏东30°方向,且相距50海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠BAP=(  )
    A. B. C. D.

    答案:A
    解析:解答: ∵灯塔A位于客轮P的北偏东30°方向,且相距50海里.
    ∴AP=50,
    ∵客轮以60海里/小时的速度沿北偏西60°方向航行 小时到达B处,
    ∴∠APB=90°,BP=60× =40,
    ∴tan∠BAP=
    故选A.
    分析: 根据题意作出图形后知道北偏东30°与北偏西60°成直角,利用正切的定义求值即可
    11.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的(  )
    A.北偏东20°方向上 B.北偏西20°方向上
    C.北偏西30°方向上 D.北偏西40°方向上

    答案:B
    解析:解答: 如图,

    ∵AC=10千米,AB=8千米,BC=6千米,
    ∴AC2=AB2+BC2,
    ∴△ABC为直角三角形,即∠ABC=90°,
    又∵B点在A的北偏东70°方向,
    ∴∠1=90°-70°=20°,
    ∴∠2=∠1=20°,
    即C点在B的北偏西20°的方向上.
    故选B.
    分析: 本题考查了解直角三角形有关方向角的问题:在每点处画上东南西北,然后利用平行线的性质和解直角三角形求角.也考查了勾股定理的逆定理
    12.海中有一个小岛A,它的周围a海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东75°方向上,航行12海里到达D点,这是测得小岛A在北偏东60°方向上.若渔船不改变航线继续向东航行而没有触礁危险,则a的最大值为(  )

    A.5 B.6 C.6 D.8
    答案:B
    解析:解答: 作AC⊥BD于点C.

    ∠ABD=90°-75°=15°,
    ∵∠ADC=90°-60°=30°,
    ∴∠BAD=∠ADC-∠ABD=30°-15°=15°,
    ∴∠ABD=∠BAD,
    ∴BD=AD=12(海里),
    在直角△ADC中,AC=AD= ×12=6(海里).
    故a的最大值是6海里.
    分析: 渔船不改变航线继续向东航行而没有触礁危险,则C到航线的距离就是a的最大值,作AC⊥BD,根据方向角的定义即可求得AD的长度,然后在直角△ACD中,求得AC的长
    13.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=(  )米.

    A.250 B.500 C.250 D.500
    答案:C
    解析:解答:∵∠PAB=90°-60°=30°,∠PBC=90°-30°=60°.
    又∵∠PBC=∠PAB+∠APB,
    ∴∠PAB=∠APB=30°.
    ∴PB=AB.
    在直角△PBC中,PC=PB•sin60°=500×=250
    故选C.
    分析:容易判断△ABP是等腰三角形,AB=BP;在直角△BCP中,利用三角函数即可求得PC的长
    14.温州市处于东南沿海,夏季经常遭受台风袭击.一次,温州气象局测得台风中心在温州市A的正西方向300千米的B处(如图),以每小时10千米的速度向东偏南30°的BC方向移动,并检测到台风中心在移动过程中,温州市A将受到影响,且距台风中心200千米的范围是受台风严重影响的区域.则影响温州市A的时间会持续多长?(  )

    A.5 B.6 C.8 D.10
    答案: D
    解析:解答:过点A作AD⊥BC于D,由题意得AB=300,∠ABD=30°,

    则AD= AB=150(km),
    设台风中心距A点200km处,刚好处在BC上的E,F两点则,
    在Rt△ADE中,AE=200,AD=150,
    则DE==50
    从而可得:EF=2DE=100,
    故A镇受台风严重影响的时间为=10(h).
    故选D.
    分析: 首先过A作作AD⊥BC于D,求得AD的长;设台风中心距A点200km处,刚好处在BC上的E,F两点则,在直角三角形中,求得ED,DF的长,已知速度,则可以求得受影响的时间
    15.如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A、B处,那么点B位于点A的(  )

    A. 南偏西40° B.南偏西30° C.南偏西20° D.南偏西10°
    答案:C
    解析:解答:∵甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,两船的航行速度相同,

    ∴AO=BO,∠BOA=80°,∠OAD=30°
    ∴∠BAO=∠ABO=50°,
    ∴∠BAD=∠BAO-∠OAD=50°-30°=20°,
    ∴点B位于点A的南偏西20°的方向上,
    故选C.
    分析: 由甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,得出∠BOA的度数,由两船的航行速度相同,得出AO=BO,得出∠BAO=50°,以及求出∠BAD的度数,得出点B位于点A的方向
    二、填空题(共5题)
    16.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为__________km

    答案:
    解析:解答: 如图,过点A作AD⊥OB于D.

    在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,
    ∴AD= OA=2km.
    在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
    ∴BD=AD=2km,
    ∴AB=AD=2km.
    即该船航行的距离(即AB的长)为2km.
    故答案为2km.
    分析: 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键
    17.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行__________海里可使渔船到达离灯塔距离最近的位置

    答案:
    解析:解答: 如图,过M作东西方向的垂线,设垂足为N.

    易知:∠MAN=90°=30°.
    在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,AM=100海里,
    ∴AN=AM•cos∠MAN=100×=海里.
    故该船继续航行
    海里可使渔船到达离灯塔距离最近的位置.
    故答案为
    分析:过M作东西方向的垂线,设垂足为N.由题易可得∠MAN=30°,在Rt△MAN中,根据锐角三角函数的定义求出AN的长即可
    18.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成____________
    答案: (7,-7).
    解析:解答: 过点A作AC⊥x轴于C.

    在直角△OAC中,∠AOC=90°-60°=30°,OA=14千米,
    则AC=OA=7千米,OC=7千米.
    因而小岛A所在位置的坐标是(7,-7).
    故答案为:(7,-7).
    分析: 过点A作AC⊥x轴于C,根据已知可求得小岛A的坐标
    19.如图,有A、B两艘船在大海中航行,B船在A船的正东方向,且两船保持20海里的距离,某一时刻这两艘船同时测得在A的东北方向,B的北偏东15°方向有另一艘船C,那么此时船C与船B的距离是_______海里.(结果保留根号)

    答案:20
    解析:解答:过点B作BD⊥AC于D.

    由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,
    ∴∠ACB=180°-∠BAC-∠ABC=30°.
    在Rt△ABD中,AD=BD=AB•sin∠BAD=20×=10(海里),
    在Rt△BCD中,BC=BD
    sin∠BCD
    = (海里),
    故答案为20海里.
    分析: 首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACB的度数,然后利用三角函数的知识求解即可求得答案
    20.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事故船C处所需的时间大约为_________小时(用根号表示).

    答案:
    解析:解答:如图,过点C作CD⊥AB交AB延长线于D.

    在Rt△ACD中,
    ∵∠ADC=90°,∠CAD=30°,AC=60海里,
    ∴CD= AC=30海里.
    在Rt△CBD中,
    ∵∠CDB=90°,∠CBD=90°-30°=60°,
    ∴BC=
    ∴海警船到大事故船C处所需的时间大约为:20÷40=(小时).
    故答案为
    分析: 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键
    三、解答题(共5题)
    21.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值)

    答案:
    解析:解答: 如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.

    在Rt△BCE中,∵∠E=90°,∠CBE=60°,
    ∴∠BCE=30°,
    ∴BE=BC=×1000=500米;
    在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=AB=1000米,
    ∴CF=CD=500米,
    ∴DA=BE+CF=(500+500)米,
    故拦截点D处到公路的距离是(500+500)米.
    分析: 本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键
    22.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.
    (1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);
    答案:解答:(1)如图,作PC⊥AB于C,

    在Rt△PAC中,∵PA=100,∠PAC=53°,
    ∴PC=PA•sin∠PAC=100×0.80=80,
    在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,
    ∴PB=PC=1.41×80≈113,
    即B处与灯塔P的距离约为113海里;

    (2)用方向和距离描述灯塔P相对于B处的位置.
    (参考数据:sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)
    答案:113海里
    解析:(2)∵∠CBP=45°,PB≈113海里,
    ∴灯塔P位于B处北偏西45°方向,且距离B处约113海里
    分析:本题考查了解直角三角形的应用-方向角问题,直角三角形,锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线求出即可.
    23.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)

    答案:17
    解析:解答:如图,过点C作CD⊥AB于点D,

    AB=20×1=20(海里),
    ∵∠CAF=60°,∠CBE=30°,
    ∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°-∠CAF=30°,
    ∴∠C=180°-∠CBA-∠CAB=30°,
    ∴∠C=∠CAB,
    ∴BC=BA=20(海里),
    ∠CBD=90°-∠CBE=60°,
    ∴CD=BC•sin∠CBD=20×≈17(海里).
    分析: 过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可
    24.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).

    答案:见解答
    解析: 解答:如图:

    过P作PM⊥AB于M,
    则∠PMB=∠PMA=90°,
    ∵∠PBM=90°-45°=45°,∠PAM=90°-60°=30°,AP=20海里,
    ∴PM= AP=10海里,AM=cos30°AP=10海里,
    ∴∠BPM=∠PBM=45°,
    ∴PM=BM=10海里,
    ∴AB=AM+BM=(10+10)海里,
    ∴BP=PM =10海里,
    即小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里.
    分析: 过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、BP
    25.如图,要测量A点到河岸BC的距离,在B点测得A点在B点的北偏东30°方向上,在C点测得A点在C点的北偏西45°方向上,又测得BC=150m.求A点到河岸BC的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)

    答案:95
    解析:解答:过点A作AD⊥BC于点D,设AD=xm.

    在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,
    ∴BD=AD•tan30°=
    在Rt△ACD中,∵∠ADC=90°,∠CAD=45°,
    ∴CD=AD=x.
    ∵BD+CD=BC,
    ∴+x=150,
    ∴x=75(3-)≈95.
    即A点到河岸BC的距离约为95m.
    分析: 本题考查了解直角三角形的应用-方向角问题,通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,有公共直角边的可利用这条边进行求解


    相关试卷

    初中北师大版6 利用三角函数测高随堂练习题: 这是一份初中北师大版6 利用三角函数测高随堂练习题,共7页。试卷主要包含了某兴趣小组用高为1,1 m,2+1等内容,欢迎下载使用。

    数学北师大版4 解直角三角形练习: 这是一份数学北师大版4 解直角三角形练习,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    北师大版九年级下册5 三角函数的应用课时练习: 这是一份北师大版九年级下册5 三角函数的应用课时练习,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023九年级数学下册第一章直角三角形的边角关系第六节利用三角函数测高课时练习新版北师大版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map