所属成套资源:新教材2023年高中数学新人教A版选择性必修第二册全册测试题(23份)
- 新教材2023年高中数学第四章数列4.1数列的概念第2课时数列的通项公式与递推公式素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第四章数列4.2等差数列4.2.1等差数列的概念第1课时等差数列的概念素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第四章数列4.2等差数列4.2.1等差数列的概念第2课时等差数列的性质及应用素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第四章数列4.2等差数列4.2.2等差数列的前n项和公式第1课时等差数列的前n项和公式素养作业新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023年高中数学第四章数列4.2等差数列4.2.2等差数列的前n项和公式第2课时等差数列习题课素养作业新人教A版选择性必修第二册 试卷 0 次下载
高中数学人教A版 (2019)选择性必修 第二册4.1 数列的概念第1课时练习
展开
这是一份高中数学人教A版 (2019)选择性必修 第二册4.1 数列的概念第1课时练习,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
A组·素养自测
一、选择题
1.下面四个结论:
①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3,…,n})上的函数;
②数列若用图象表示,从图象上看都是一群孤立的点;
③数列的项数是无限的;
④数列通项的表示式是唯一的.
其中正确的是( A )
A.①② B.①②③
C.②③ D.①②③④
[解析] 数列的项数可以是有限的也可以是无限的.数列通项的表示式可以不唯一.例如数列1,0,-1,0,1,0,-1,0,…的通项可以是an=sineq \f(nπ,2),也可以是an=cseq \f((n+3)π,2)等等.
2.已知数列{an}的通项公式an=eq \b\lc\{(\a\vs4\al\c1(3n-1(n为奇数),,2n-2(n为偶数),))则a2a3的值是( D )
A.70 B.28
C.20 D.16
[解析] a2=2×2-2=2,a3=3×3-1=8,a2a3=16.故选D.
3.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项都代表太极衍生过程中,曾经经历过的两翼数量总和,是中华传统文化中隐藏着的世界数学史上的第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则此数列的第20项为( B )
A.212 B.200
C.186 D.162
[解析] 由0,2,4,8,12,18,24,32,40,50,…,可得偶数项的通项公式为a2n=2n2,则a20=2×102=200,即此数列的第20项为200.
4.在数列1,2,eq \r(7),eq \r(10),eq \r(13),…中,2eq \r(19)是这个数列的( C )
A.第16项 B.第24项
C.第26项 D.第28项
[解析] 数列各项可化为eq \r(1),eq \r(3×1+1),eq \r(3×2+1),eq \r(3×3+1),eq \r(3×4+1),…,故an=eq \r(3n-2)(n∈N*).由eq \r(3n-2)=2eq \r(19)可得n=26,即2eq \r(19)是这个数列的第26项.
5.已知数列{an}的通项公式是an=eq \f(2n,n+1),那么这个数列是( A )
A.递增数列 B.递减数列
C.摆动数列 D.常数列
[解析] an=eq \f(2n,n+1)=2-eq \f(2,n+1)单调递增.故选A.
6.已知数列{an}的通项公式为an=-2n2+21n,则该数列中的数值最大的项是( A )
A.第5项 B.第6项
C.第4项或第5项 D.第5项或第6项
[解析] an=-2eq \b\lc\(\rc\)(\a\vs4\al\c1(n-\f(21,4)))eq \s\up12(2)+eq \f(441,8),因为n∈N*,5
相关试卷
这是一份数学选择性必修 第二册4.1 数列的概念一课一练,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册4.1 数列的概念第2课时练习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第二册第四章 数列4.1 数列的概念第1课时习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。