终身会员
搜索
    上传资料 赚现金
    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析)
    立即下载
    加入资料篮
    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析)01
    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析)02
    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析)

    展开
    这是一份陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题(含解析),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    陕西省咸阳市武功县普集高级中学2022-2023学年高二下学期第二次月考文科数学试题
    学校:___________姓名:___________班级:___________考号:___________

    一、单选题
    1.已知为虚数单位,复数,则z的虚部是(    )
    A.4 B. C. D.
    2.已知不等式由此可猜想:若,则等于(    )
    A. B. C. D.
    3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图.根据散点图判断,下面四个回归模型中,最适合的是(    )

    A.y=bx+a B. C. D.
    4.点的直角坐标是,则点的极坐标为(    )
    A. B.
    C. D.
    5.在运动会中,甲、乙、丙参加了跑步、铅球、标枪三个项目,每人参加的比赛项目不同.已知①乙没有参加跑步;②若甲参加铅球,则丙参加标枪;③若丙没有参加铅球,则甲参加铅球.下列说法正确的为(    )
    A.丙参加了铅球 B.乙参加了铅球
    C.丙参加了标枪 D.甲参加了标枪
    6.如图是输出数据15的程序框图,则判断框内应填入的条件是

    A. B. C. D.
    7.将极坐标方程化为直角坐标方程为(    )
    A.
    B.
    C.
    D.
    8.极坐标方程表示的曲线是(    )
    A.圆 B.椭圆 C.双曲线 D.抛物线
    9.椭圆(为参数)的长轴长为(    )
    A.3 B.5 C.6 D.8
    10.不等式的解集为(    )
    A.R B.
    C. D.
    11.已知,则的取值范围是(  )
    A. B. C. D.
    12.羽毛球单打实行“三局两胜”制(无平局).甲乙两人争夺比赛的冠军.甲在每局比赛中获胜的概率均为,且每局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为(    )
    A. B. C. D.

    二、填空题
    13.直线的极坐标方程为___________.
    14.若直线的参数方程为(t为参数),则直线的倾斜角为________.
    15.若正实数、满足,则的最小值为______.
    16.已知x2+y2=10,则3x+4y的最大值为______.

    三、解答题
    17.设复数(其中),,i为虚数单位.
    (1)若是实数,求的值,并计算的值;
    (2)若是纯虚数,求的值.
    18.已知甲、乙、丙参加某项测试时,通过的概率分别为0.6,0.8,0.9,而且这3人之间的测试互不影响.
    (1)求甲、乙、丙都通过测试的概率;
    (2)求甲未通过且乙、丙通过测试的概率;
    (3)求甲、乙、丙至少有一人通过测试的概率.
    19.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛.
    开学后,某中学团委在高二年级(其中男生150名,女生150名)中,对是否喜欢观看该世界杯进行了问卷调查,各班男生喜欢观看的人数统计分别为6,7,8,8,6,5,14,14,12,10,各班女生喜欢观看的人数统计分别为4,4,4,5,5,6,7,7,8,10.

    喜欢观看
    不喜欢观看
    合计
    男生


    150
    女生


    150
    合计


    300
    (1)根据题意补全2×2列联表;
    (2)依据小概率值的独立性检验,能否认为该校学生喜欢观看世界杯与性别有关?参考临界值表:

    0.1
    0.05
    0.01
    0.005
    0.001

    2.706
    3.841
    6.635
    7.879
    10.828
    ,.
    20.求证:
    (1)
    (2)
    21.已知曲线的参数方程为:(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:,直线l的极坐标方程为.
    (1)求曲线的普通方程;
    (2)若曲线和曲线与直线l分别交于非坐标原点的A,B两点,求的值.
    22.已知函数.
    (1)画出的图像,并直接写出的值域;
    (2)若不等式恒成立,求实数的取值范围.

    参考答案:
    1.B
    【分析】直接根据复数虚部的概念得到答案.
    【详解】复数,则z的虚部是.
    故选:B
    2.C
    【分析】通过观察给出几个式子,归纳出不等式右边分式的变化规律即可得出结果.
    【详解】由,观察发现不等式右边分式的分母是左边项数加1,分子比分母小1,故,
    故选:C.
    3.C
    【分析】根据样本点分布的分布情况和函数的图象特征判断.
    【详解】解:由散点图看出,样本点分布在开口向右的抛物线(上支)附近,
    整体趋势递增,单位增长率逐渐变小,
    所以函数较适宜,
    故选:C
    4.B
    【分析】设点的极坐标,再根据直角坐标与极坐标的关系求解即可
    【详解】设点的极坐标为则,故,,故,故点的极坐标为
    故选:B
    5.A
    【分析】由①可得乙参加铅球或标枪,假设乙参加铅球,推出矛盾得到乙参加标枪,从而得到丙、甲所参加的项目,即可判断.
    【详解】由①乙没有参加跑步,则乙参加铅球或标枪,
    若乙参加铅球,则丙就没有参加铅球,由③可知甲参加铅球,故矛盾,
    所以乙参加标枪,
    显然丙没有参加标枪,则丙参加铅球,甲参加跑步,
    综上可得:甲参加跑步,乙参加标枪,丙参加铅球.
    故选:A
    6.C
    【分析】变量初始值,,执行第一次循环列举结果,再执行第二次循环,直到输出数据15循环终止,得到判断框条件.
    【详解】,;,;,;
    ,;
    因为输出数据15,所以.
    故选:C.
    【点睛】解决程序框图填充问题的思路
    (1)要明确程序框图的顺序结构、条件结构和循环结构.
    (2)要识别、执行程序框图,理解框图所解决的实际问题.
    (3)按照题目的要求完成解答并验证.
    7.B
    【分析】在等式两边同乘,结合转化工具,将极坐标方程转化为直角坐标方程即可.
    【详解】由知,
    结合极坐标方程与直角坐标方程的转化 知,
    ,即
    故选:B
    8.D
    【分析】将代入可得直角坐标方程即可判断.
    【详解】由可得,
    将代入可得,即,
    所以该曲线为抛物线.
    故选:D.
    9.D
    【分析】根据椭圆的参数方程写出标准方程即可求出长轴长.
    【详解】因为椭圆(为参数),所以标准方程为,
    所以,故长轴长为.
    故选:D.
    10.D
    【分析】根据解绝对值不等式的公式,即可求解.
    【详解】因为,则,解得:,
    所以不等式的解集为:.
    故答案为:
    11.A
    【分析】利用不等式的基本性质即可求得答案
    【详解】因为,所以,
    由,得,
    故选:A
    12.A
    【分析】求出甲获胜的概率、甲获得冠军且比赛进行了三局的概率,利用条件概率公式求概率即可.
    【详解】由甲获胜的概率为,
    而甲获得冠军且比赛进行了三局,对应概率为,
    所以在甲获得冠军的条件下,比赛进行了三局的概率为.
    故选:A
    13.或
    【分析】根据直线方程求得直线的倾斜角,进而求得直线的极坐标方程,得到答案.
    【详解】由直线,可得,则直线的倾斜角为,即,可得
    可得或,即直线的极坐标方程为或.
    故答案为:或.
    14.
    【分析】将参数方程化为普通方程,求得斜率,进而求得倾斜角.
    【详解】直线的参数方程为(t为参数),则,即,
    所以直线的斜率为:,倾斜角的取值范围为:
    所以倾斜角为:.
    故答案为:.
    15.
    【分析】将与相乘,展开后利用基本不等式可求得的最小值.
    【详解】因为正实数、满足,
    所以.
    当且仅当,即,时,等号成立,故的最小值为.
    故答案为:.
    16.5.
    【解析】由二维柯西不等式即可得解.
    【详解】解:∵(32+42)(x2+y2)≥(3x+4y)2,
    当且仅当3y=4x时等号成立,
    ∴25×10≥(3x+4y)2,

    ∴(3x+4y)max=5.
    故答案为:5.
    【点睛】本题考查了柯西不等式,重点考查了柯西不等式的应用,属基础题.
    17.(1)3,
    (2)

    【分析】(1)是实数,说明虚部为0,可求出的值,再计算即可;
    (2)先将进行化简,因为是纯虚数,说明实部为0,且虚部不为0,从而求出.
    【详解】(1)∵(其中),,
    ∴,
    由是实数,所以,解得.
    ∴,,
    则;
    (2)因为是纯虚数,
    所以,解得,
    故.
    18.(1)
    (2)
    (3)

    【分析】(1)(2)(3)利用独立事件的乘方公式及对立事件概率求法求各对应事件的概率.
    【详解】(1)甲、乙、丙都通过测试的概率为.
    (2)甲未通过且乙、丙通过测试的概率为.
    (3)甲、乙、丙至少有一人通过测试的概率为.
    19.(1)列联表见解析
    (2)小概率值的独立性检验,能认为该校学生喜欢观看世界杯与性别有关

    【分析】(1)根据题设数据确定男女生喜欢、不喜欢观看球赛的人数,即可完成列联表;
    (2)应用卡方公式求卡方值,根据独立检验的基本思想即可得结论.
    【详解】(1)由题设,喜欢观看的男生有人,故不喜欢观看的男生有人;
    喜欢观看的女生有人,故不喜欢观看的女生有人;
    列联表如下图示:

    喜欢观看
    不喜欢观看
    合计
    男生
    90
    60
    150
    女生
    60
    90
    150
    合计
    150
    150
    300
    (2)由,
    所以依据小概率值的独立性检验,能认为该校学生喜欢观看世界杯与性别有关.
    20.(1)证明见解析
    (2)证明见解析

    【分析】(1)利用做差法证明不等式的大小即可;
    (2)利用做差法和平方差公式即可证明不等式成立.
    【详解】(1)因为



    所以.
    (2)因为



    所以.
    21.(1)
    (2)

    【分析】(1)利用同角三角关系即可转化,(2)根据极径的几何意义求解.
    【详解】(1)曲线的参数方程为:(为参数),
    普通方程为.
    (2)由(1)的曲线的一般方程为:,
    化为极坐标方程:
    将代入的极坐标方程得,
    将代入的极坐标方程得:,
    ∴.
    22.(1)图象见解析,函数的值域是
    (2)或.

    【分析】(1)将化为分段函数,根据分段函数的解析式画出图象,根据图象可得值域;
    (2)化为,解不等式可得结果.
    【详解】(1)当时,,
    当时,,
    当时,,
    所以,
    的图象如图:

    由图可知,函数的值域是.
    (2)若不等式恒成立,则,
    则,即,
    解得或.

    相关试卷

    2023-2024学年陕西省咸阳市武功县普集高级中学高二上学期12月月考数学试题含答案: 这是一份2023-2024学年陕西省咸阳市武功县普集高级中学高二上学期12月月考数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年陕西省咸阳市武功县普集高级中学高二下学期第二次月考数学(理)试题含答案: 这是一份2022-2023学年陕西省咸阳市武功县普集高级中学高二下学期第二次月考数学(理)试题含答案,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    陕西省咸阳市武功县普集高级中学2023届高三下学期五模理科数学试题(含解析): 这是一份陕西省咸阳市武功县普集高级中学2023届高三下学期五模理科数学试题(含解析),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map