所属成套资源:【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考)
- 第08讲函数与方程(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考) 试卷练习 试卷 3 次下载
- 第09讲函数模型及其应用(讲义)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考) 试卷 1 次下载
- 第10讲第二章函数与基本初等函数章节总结(讲义)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考) 试卷 6 次下载
- 第11讲第二章函数与基本初等函数(综合测试)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考) 试卷 2 次下载
- 第01讲导数的概念及运算(讲义)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考) 试卷 3 次下载
第09讲函数模型及其应用(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考)
展开
这是一份第09讲函数模型及其应用(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考),文件包含第09讲函数模型及其应用分层精练解析版docx、第09讲函数模型及其应用分层精练原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
第09讲 函数模型及其应用 (精练(分层练习)
A夯实基础 B能力提升 C综合素养
A夯实基础
一、单选题
1.(2023·江苏·高三统考学业考试)在一次实验中,某小组测得一组数据,并由实验数据得到下面的散点图.由此散点图,在区间上,下列四个函数模型为待定系数)中,最能反映函数关系的是( )
A. B.
C. D.
2.(2023秋·湖南张家界·高二统考期末)“每天进步一点点”可以用数学来诠释:假如你今天的数学水平是1,以后每天比前一天增加千分之五,经过天之后,你的数学水平与之间的函数关系式为( )
A. B. C. D.
3.(2023秋·浙江·高一期末)某市的电费收费实行峰平谷标准,如下表所示:
时间段
电价
峰期
14:00-17:00
19:00-22:00
1.02元/度
平期
8:00-14:00
17:00-19:00
22:00-24:00
0.63元/度
谷期
0:00-8:00
0.32元/度
该市市民李丹收到11月的智能交费账单显示:电量520度(其中谷期电量170度),电费333.12元.请你根据以上信息计算李丹家的峰期用电量大约为(精确到整数)( )
A.149度 B.179度 C.199度 D.219度
4.(2023春·海南·高一统考学业考试)某地有一片长期被污染水域,经过治理后生态环境得到恢复,在此水域中生活的鱼类数量可以采用阻滞增长模型进行预测,其中为年后的鱼类数量,为自然增长率,(单位:万条)为饱和量,(单位:万条)为初始值.已知2022年底该水域的鱼类数量为20万条,以此为初始值,若自然增长率为,饱和量为1600万条,那么预计2032年底该水域的鱼类数量约为(参考数据)( )
A.68万条 B.72万条 C.77万条 D.83万条
5.(2023·江西南昌·南昌十中校考一模)2022年6月5日上午10时44分,我国在酒泉卫星发射中心使用长征二号F运载火箭,将神舟十四号载人飞船和3名中国航天员送入太空这标志着中国空间站任务转入建造阶段后的首次载人飞行任务正式开启.火箭在发射时会产生巨大的噪音,已知声音的声强级(单位:)与声强(单位:)满足.若人交谈时的声强级约为,且火箭发射时的声强与人交谈时的声强的比值约为,则火箭发射时的声强级约为( )
A. B. C. D.
6.(2023春·湖北·高一随州市第一中学校联考阶段练习)如图,假定两点P、Q以相同的初速度运动,分别同时从A、C出发,点Q沿射线做匀速运动,;点P沿线段(长度为单位)运动,它在任何一点的速度值等于它尚未经过的距离,那么定义x为y的纳皮尔对数,对应关系为(其中e为自然对数的底数,),则P从靠近A的第一个四等分点移动到靠近B的三等分点经过的时间约为( )(参考数据:)
A.0.7秒 B.0.8秒 C.1.1秒 D.1.2秒
7.(2023春·四川绵阳·高三四川省绵阳南山中学校考阶段练习)2023年1月底,由马斯克、彼得泰尔等人创立的人工智能研究公司openAI发布的名为“ChatGTP”的人工智能聊天程序进入中国,迅速以其极高的智能化水平引起国内关注.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示初始学习率,表示衰减系数,表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为,则学习率衰减到以下(不含)所需的训练迭代轮数至少为( )(参考数据:)
A.72 B.74 C.76 D.78
8.(2023秋·广东·高一统考期末)三星堆遗址被称为20世纪人类最伟大的考古发现之一.考古学家在测定遗址年代的过程中,利用“生物死亡后体内碳14含量按确定的比率衰减”这一规律,建立了样本中碳14含量随时间(单位:年)变化的数学模型:表示碳14的初始量).2020年考古学家对三星堆古遗址某文物样本进行碳14年代学检测,检测出碳14的含量约为初始量的,据此推测三星堆古遗址存在的时期距今大约是( )(参考数据:)
A.2796年 B.3152年 C.3952年 D.4480年
二、多选题
9.(2023秋·四川眉山·高一校考期末)下列说法正确的是( )
A.若,则:
B.若,则的最小值为2
C.若都是正数,且,则的最小值是3
D.下列选项是四种生意预期的收益关于时间的函数,从足够长远的角度看,更有前途的生意是:②;① ② ③ ④
10.(2023·全国·高三专题练习)甲、乙两位股民以相同的资金进行股票投资,在接下来的交易时间内,甲购买的股票先经历了一次涨停(上涨10%),又经历了一次跌停(下跌10%),乙购买的股票先经历了一次跌停(下跌10%),又经历了一次涨停(上涨10%),则甲,乙的盈亏情况(不考虑其他费用)为( )
A.甲、乙都亏损 B.甲盈利,乙亏损 C.甲亏损,乙盈利 D.甲、乙亏损的一样多
三、填空题
11.(2023·陕西西安·统考一模)我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过次这样的操作后,去掉的所有线段的长度总和大于,则的最小值为__________.(参考数据:)
12.(2023秋·上海青浦·高一上海市青浦高级中学校考期末)在不考虑空气阻力的情况下火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg),火箭(除燃料外)的质量m(单位:kg)满足(e为自然对数的底).当燃料质量M为火箭(除燃料外)质量m的______倍时,火箭的最大速度可以达到8000m/s(结果精确到0.1).
四、解答题
13.(2023春·上海嘉定·高一统考阶段练习)2023年某企业计划引进新能源汽车生产设备,经过市场分析,全年需投入固定成本2500万元,每生产百辆新能源汽车需另投入成本万元,且,由市场调研知,每一百辆车售价800万元,且全年内生产的车辆当年能全部销售完.
(1)求出2023年的利润(单位:万元)关于年产量(单位:百辆)的函数关系;(利润=销售额-成本)
(2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.
14.(2023·全国·高三对口高考)广富林,原称皇甫林、广福林,位于上海松江城西北6公里,辰山塘东岸.广富林地区地处上海市松江大学城,古代属于华亭谷范畴,孕育了灿烂的广富林古文化,是上古时期东吴东部文化、政治、经济和交通中心.广富林古墓中发掘的随葬品有上百件之多,包括石器生产工具、陶器生活用品和礼器、独具文化象征意义的动物类骨骼等.
(1)生物体死亡后,它的机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间叫做“半衰期”.设生物体死亡时体内碳14的含量为1,根据上述规律,写出生物体内碳14的含量p与死亡年数t的函数关系式;
(2)某考古研究团队对广富林出土的动物遗骸进行了碳14年代检测,测出的碳14的残留量约为初始量的48.5%,请你推断这些动物遗骸距今大约有多少年?(精确到1年)
15.(2023秋·甘肃酒泉·高一统考期末)党的二十大报告提出,积极稳妥推进碳达峰碳中和,立足我国能源资源禀赋,坚持先立后破,有计划分步骤实施碳达峰行动,深入推进能源革命,加强煤炭清洁高效利用,加快规划建设新型能源体系,积极参与应对气候变化全球治理.在碳达峰、碳中和背景下,光伏发电作为我国能源转型的中坚力量发展迅速.在可再生能源发展政策的支持下,今年前8个月,我国光伏新增装机达到4447万千瓦,同比增长2241万千瓦.某公司生产光伏发电机的全年固定成本为1000万元,每生产x(单位:百台)发电机组需增加投入y(单位:万元),其中,该光伏发电机年产量最大为10000台.每台发电机的售价为16000元,全年内生产的发电机当年能全部售完.
(1)将利润P(单位:万元)表示为年产量x(单位:百台)的函数;
(2)当年产量为何值时,公司所获利润最大?最大利润为多少万元?(总收入=总成本+利润).
B能力提升
1.(2023·河南洛阳·洛阳市第三中学校联考一模)党的二十大报告将“完成脱贫攻坚、全面建成小康社会的历史任务,实现第一个百年奋斗目标”作为十年来对党和人民事业具有重大现实意义和深远历史意义的三件大事之一.某企业积极响应国家号召,对某经济欠发达地区实施帮扶,投资生产A产品.经过市场调研,生产A产品的固定成本为200万元,每生产x万件,需可变成本万元,当产量不足50万件时,;当产量不小于50万件时,.每件A产品的售价为100元,通过市场分析,生产的A产品可以全部销售完.欲使得生产该产品能获得最大利润,则产量应为( )
A.40万件 B.50万件 C.60万件 D.80万件
2.(2023秋·湖南娄底·高一校考期末)如图,假定P,Q两点以相同的初速度(单位:单位/秒),分别同时从A,C出发,点Q沿射线做匀速运动,,点P沿线段(长度为单位)运动,它在任何一点的速度值等于它尚未经过的距离,那么定义x为y的纳皮尔对数,函数表达式为,则P从靠近A的第一个五等分点移动到靠近B的三等分点经过的时间约为( )(参考数据:)
A.0.7秒 B.0.9秒 C.1.1秒 D.1.3秒
3.(2023秋·浙江湖州·高一期末)蒙牛成为2022年卡塔尔世界杯的奶制品供应商.该厂商计划临时租用总面积为3000平方米的生产厂区,其中涵盖临时搭建牛奶类和酸奶类共计60间生产车间及绿化改造.每间牛奶类车间的面积为50平方米,租金为每月x万元;每间酸奶类车间的面积为30平方米,租金为每月0.5万元.现要求所有车间的面积之和不低于总面积的,又不能超过总面积的,则牛奶类生产车间的搭建方案有______种,为保证任何一种搭建方案平均每个车间租用费用不低于每间牛奶类车间月租费的,则x的最大值为_____________万元.
C综合素养
1.(2023秋·江苏苏州·高三统考期末)已知通过某种圆筒型保温层的热流量,其中,分别为保温层的内外半径(单位:mm),,分别为保温层内外表面的温度(单位:℃),l为保温层的长度(单位:m),为保温层的导热系数(单位:).某电厂为了减少热损失,准备在直径为120 mm、外壁面温度为250℃的蒸汽管道外表面覆盖这种保温层,根据安全操作规定,保温层外表面温度应控制为50℃.经测试,当保温层的厚度为30 mm时,每米长管道的热损失为300 W.若要使每米长管道的热损失不超过150 W,则覆盖的保温层厚度至少为( )
A.60 mm B.65 mm C.70 mm D.75 mm
2.(多选)(2023·全国·高三专题练习)某公司通过统计分析发现,工人工作效率与工作年限(),劳累程度(),劳动动机()相关,并建立了数学模型.已知甲、乙为该公司的员工,则下列说法正确的有( )
A.甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强
B.甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短,则甲比乙劳累程度弱
C.甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高
D.甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高
3.(多选)(2023秋·山东临沂·高一山东省临沂第一中学校考期末)边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用,函数的边际函数定义为.某公司每月最多生产75台报警系统装置,生产台的收入函数(单位:元),其成本的数(单位:元),利润是收入与成本之差,设利润函数为,则以下说法正确的是( )
A.取得最大值时每月产量为台
B.边际利润函数的表达式为
C.利润函数与边际利润函数不具有相同的最大值
D.边际利润函数说明随着产量的增加,每台利润与前一台利润差额在减少
4.(2023春·湖南长沙·高一校联考阶段练习)为响应国家“降碳减排”号召,新能源汽车得到蓬勃发展,而电池是新能源汽车最核心的部件之一.湖南某企业为抓住新能源汽车发展带来的历史性机遇,决定开发生产一款新能源电池设备.生产这款设备的年固定成本为200万元,每生产台需要另投入成本(万元),当年产量不足45台时,万元,当年产量不少于45台时,万元.若每台设备的售价与销售量的关系式为万元,经过市场分析,该企业生产新能源电池设备能全部售完.
(1)求年利润(万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时,该企业在这一款新能源电池设备的生产中获利最大?最大利润是多少万元?
5.(2023春·安徽马鞍山·高一安徽省马鞍山市第二十二中学校考阶段练习)诺贝尔奖发放方式为:每年一发,把奖金总额平均分成份,奖励给分别在项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为.资料显示:年诺贝尔奖发放后基金总额约为万美元.设表示第年诺贝尔奖发放后的基金总额(年记为,年记为,,依次类推).(参考数据:,,)
(1)分别求出、与的关系式;
(2)根据(1)所求的结果归纳出函数的解析式(无需证明).
(3)若,试求出年诺贝尔奖每位获奖者的奖金额是多少.
相关试卷
这是一份第02讲导数与函数的单调性(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考),文件包含第02讲导数与函数的单调性分层精练解析版docx、第02讲导数与函数的单调性分层精练原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份第08讲函数与方程(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考),文件包含第08讲函数与方程分层精练解析版docx、第08讲函数与方程分层精练原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份第07讲函数的图象(逐级突破)-【满分之路】2024年高考数学一轮复习高频考点逐级突破(2024新教材新高考),文件包含第07讲函数的图象分层精练解析版docx、第07讲函数的图象分层精练原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。