_2021年四川省巴中市中考数学真题及答案
展开2021年四川省巴中市中考数学真题及答案
一、选择题(本大题共12个小题,每个小题4分,共48分.在每个小题给出的四个选项中,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑.
1.下列各式的值最小的是( )
A.20 B.|﹣2| C.2﹣1 D.﹣(﹣2)
2.某立体图形的表面展开图如图所示,这个立体图形是( )
A. B. C. D.
3.据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是( )
A.337×108 B.3.37×1010 C.3.37×1011 D.0.337×1011
4.下列调查中最适合采用全面调查(普查)的是( )
A.了解巴河被污染情况
B.了解巴中市中小学生书面作业总量
C.了解某班学生一分钟跳绳成绩
D.调查一批灯泡的质量
5.如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是( )
A.DE:BC=1:2
B.△ADE与△ABC的面积比为1:3
C.△ADE与△ABC的周长比为1:2
D.DE∥BC
6.关于x的分式方程﹣3=0有解,则实数m应满足的条件是( )
A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2
7.小风在1000米中长跑训练时,已跑路程x(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
8.如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是( )
A.sinB= B.sinC=
C.tanB= D.sin2B+sin2C=1
9.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
10.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )
A.(20﹣x)2=20x B.x2=20(20﹣x)
C.x(20﹣x)=202 D.以上都不对
11.如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将△BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )
A. B. C. D.
12.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
二、填空题(本大题共6个小题,每小题3分,共18分.将正确答案直接写在答题卡相应的位置上.
13.函数y=+中自变量x的取值范围是 .
14.关于x的方程2x2+mx﹣4=0的一根为x=1,则另一根为 .
15.为优选品种,某农业科技小组对甲、乙两种杂交水稻进行种植对比试验研究,近五年来这两种杂交水稻的亩产量的平均数(单位:千克)及方差s2见表格.明年准备从中选出一种品质更优的杂交水稻进行种植,则应选的品种是 .
甲
乙
880
880
s2
2160
2500
16.y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)=是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a= .
17.如图,平行于y轴的直线与函数y1=(x>0)和y2=(x>0)的图象分别交于A、B两点,OA交双曲线y2=于点C,连接CD,若△OCD的面积为2,则k= .
18如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
19(1)计算:2sin60°+|﹣2|﹣()﹣1+;
(2)解不等式组,并把解集在数轴上表示出来.
(3)先化简,再求值:÷(1+),请从﹣4,﹣3,0,1中选一个合适的数作为a的值代入求值.
三、解答题(本大题共7道小题,共84分.请将解答过程写在答题卡相应的位置上.)
20如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.
(1)求证:四边形ABED为菱形;
(2)连接BD,当CE=5时,求BD的长.
21为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
(1)该校九年级共有 名学生,“D”等级所占圆心角的度数为 ;
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
22学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50,≈1.73.)
(1)求灯杆AB的高度;
(2)求CD的长度.
23如图,双曲线y=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.
(1)求m,k,b的值;
(2)求△ABE的面积;
(3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线y=有唯一交点,求n的值.
24如图、△ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.
(1)求证:直线AD是⊙O的切线;
(2)若AD=2,BC=6,求图中阴影部分面积.
25已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
参考答案与试题解析
一.选择题(共12小题)
1.下列各式的值最小的是( )
A.20 B.|﹣2| C.2﹣1 D.﹣(﹣2)
【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质分别化简得出答案.
【解答】解:20=1,|﹣2|=2,2﹣1=,﹣(﹣2)=2,
∵<1<2,
∴最小的是2﹣1.
故选:C.
2.某立体图形的表面展开图如图所示,这个立体图形是( )
A. B. C. D.
【分析】利用立体图形及其表面展开图的特点解题.
【解答】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.
故选:A.
3.据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是( )
A.337×108 B.3.37×1010 C.3.37×1011 D.0.337×1011
【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值小于1时,n是负数.
【解答】解:337亿=33700000000=3.37×1010.
故选:B.
4.下列调查中最适合采用全面调查(普查)的是( )
A.了解巴河被污染情况
B.了解巴中市中小学生书面作业总量
C.了解某班学生一分钟跳绳成绩
D.调查一批灯泡的质量
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【解答】解:A.了解巴河被污染情况,适合抽样调查,故本选项不合题意;
B.了解巴中市中小学生书面作业总量,适合抽样调查,故本选项不合题意;
C.了解某班学生一分钟跳绳成绩,适合全面调查,故本选项符合题意;
D.调查一批灯泡的质量,适合抽样调查,故本选项不合题意;
故选:C.
5.如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是( )
A.DE:BC=1:2
B.△ADE与△ABC的面积比为1:3
C.△ADE与△ABC的周长比为1:2
D.DE∥BC
【分析】根据相似三角形的判定与性质进行逐一判断即可.
【解答】解:∵==,
∴DE:BC=1:3,故A错误;
∵=,
∴=,∠A=∠A,
∴△ADE∽△ABC,
∴△ADE与△ABC的面积比为1:9,故B和C错误;
∵=,
∴=,∠A=∠A,
∴△ADE∽△ABC,
∴∠ADE=∠B,
∴DE∥BC.故D正确.
故选:D.
6.关于x的分式方程﹣3=0有解,则实数m应满足的条件是( )
A.m=﹣2 B.m≠﹣2 C.m=2 D.m≠2
【分析】解分式方程得4x=6﹣m,由题意可知x≠2,则6﹣m≠8,即可求m的取值.
【解答】解:﹣3=0,
方程两边同时乘以2﹣x,得m+x﹣3(2﹣x)=0,
去括号得,m+x﹣6+3x=0,
合并同类项得,4x=6﹣m,
∵方程有解,
∴x≠2,
∴6﹣m≠8,
∴m≠﹣2,
故选:B.
7.小风在1000米中长跑训练时,已跑路程x(米)与所用时间t(秒)之间的函数图象如图所示,下列说法错误的是( )
A.小风的成绩是220秒
B.小风最后冲刺阶段的速度是5米/秒
C.小风第一阶段与最后冲刺阶段速度相等
D.小风的平均速度是4米/秒
【分析】根据函数图象上的数据,求出相应阶段的速度即可得到正确的结论.
【解答】解:A、小风的成绩是220秒,本选项正确,不符合题意;
B、小风最后冲刺阶段的速度是=5(米/秒),本选项正确,不符合题意;
C、小风第一阶段的速度是=5(米/秒),即小风第一阶段与最后冲刺阶段速度相等,本选项正确,不符合题意;
D、=(米/秒),故本选项错误,符合题意;
故选:D.
8.如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是( )
A.sinB= B.sinC=
C.tanB= D.sin2B+sin2C=1
【分析】根据勾股定理得出AB,AC,BC的长,进而利用勾股定理的逆定理得出△ABC是直角三角形,进而解答即可.
【解答】解:由勾股定理得:AB=,AC=,BC=,
∴BC2=AB2+AC2,
∴△ABC是直角三角形,∠BAC=90°,
∴sinB=,sinC=,tanB=,sin2B+sin2C=,
故选:A.
9.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
【分析】根据题意连接OA、OC,OC交AB于点E,根据垂径定理推出OC⊥AB,且AE=BE=3,再由圆周角定理推出∠AOC=2∠ADC=60°,从而根据直角三角形的性质进行求解即可.
【解答】解:如图,
连接OA、OC,OC交AB于点E,
∵点C是弧AB中点,AB=6,
∴OC⊥AB,且AE=BE=3,
∵∠ADC=30°,
∴∠AOC=2∠ADC=60°,
∴∠OAE=30°,
∴OE=AE=,
故圆心O到弦AB的距离为.
故选:C.
10.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )
A.(20﹣x)2=20x B.x2=20(20﹣x)
C.x(20﹣x)=202 D.以上都不对
【分析】点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20﹣x,则,即可求解.
【解答】解:由题意知,点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20﹣x,
∴,
∴(20﹣x)2=20x,
故选:A.
11.如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将△BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )
A. B. C. D.
【分析】利用翻折后△ADE与△OEB相似得到ED的长,进而求解,
【解答】解:∵四边形AOBC为矩形,且点C(﹣10,8),
∴AC=OB=8,AO=BC=10,∠C=∠A=∠EOB=90°,
∵△BCD沿BD翻折,点C恰好落在OA边上点E处,
∴CD=DE,BC=BE=10,
在Rt△OBE中,OE===6,
设CD=DE=m,则AD=8﹣m,
∵∠ADE+∠AED=∠AED+∠OEB=90°,
∴∠ADE=∠OEB,
∵∠A=∠AOB,
∴△ADE∽△OEB,
∴,即,
解得m=3,
∴DE=8﹣3=5,
在Rt△BDE中,DE=5,BE=10,
∴tan∠DBE==,
故选:D.
12.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x
…
﹣3
﹣2
﹣1
1
2
…
y
…
1.875
3
m
1.875
0
…
A.①④ B.②③ C.③④ D.②④
【分析】由表格可以得到二次函数图象经过点点(﹣3,1.875)和点(1,1.875),这两点关于对称轴对称,由此得到对称轴直线,设出二次函数顶点式,代入两点,求解出二次函数解析式,得到a,b,c的值,依次代入到①②③④中进行判断即可解决.
【解答】解:由表格可以得到,二次函数图象经过点(﹣3,1.875)和点(1,1.875),
∵点(﹣3,1.875)与点(1,1.875)是关于二次函数对称轴对称的,
∴二次函数的对称轴为直线x==﹣1,
∴设二次函数解析式为y=a(x+1)2+h,
代入点(﹣2,3),(2,0)得,
,
解得,
∴二次函数的解析式为:,
∵,
∴c=3,
∴①是错误的,
∵b2﹣4ac=>0,
∴②是正确的,
方程ax2+bx=0为,
即为x2+2x=0,
∴x1=﹣2,x2=0,
∴③是正确的,
∵7a+c==>0,
∴④是错误的,
∴②③是正确的,
故选:B.
二.填空题
13.函数y=+中自变量x的取值范围是 x≤2且x≠﹣3 .
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
【解答】解:由题意得,2﹣x≥0且x+3≠0,
解得x≤2且x≠﹣3.
故答案为:x≤2且x≠﹣3.
14.关于x的方程2x2+mx﹣4=0的一根为x=1,则另一根为 x2=﹣2 .
【分析】设方程的另一根为x2,根据根与系数的关系可得x2=﹣2,解答出即可.
【解答】解:设方程的另一根为x2,
∵关于x的方程2x2+mx﹣4=0的一根为x=1,
则1×x2==﹣2,
解得x2=﹣2.
故答案为:x2=﹣2.
15.为优选品种,某农业科技小组对甲、乙两种杂交水稻进行种植对比试验研究,近五年来这两种杂交水稻的亩产量的平均数(单位:千克)及方差s2见表格.明年准备从中选出一种品质更优的杂交水稻进行种植,则应选的品种是 甲 .
甲
乙
880
880
s2
2160
2500
【分析】先比较平均数得到甲和乙产量相同,然后比较方差得到甲比较稳定.
【解答】解:因为甲、乙的平均数相同,
又甲的方差比乙小,所以甲的产量比较稳定,
则应选的品种是甲;
故答案为:甲.
16.y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)=是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a= 5 .
【分析】由f(x)=ax2+(a﹣5)x+1是偶函数,得a(﹣x)2+(a﹣5)•(﹣x)+1=ax2+(a﹣5)x+1,解得a=5.
【解答】解:∵f(x)=ax2+(a﹣5)x+1是偶函数,
∴对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),即a(﹣x)2+(a﹣5)•(﹣x)+1=ax2+(a﹣5)x+1,
∴(10﹣2a)x=0,可知10﹣a=0,
∴a=5,
故答案为:5.
17.如图,平行于y轴的直线与函数y1=(x>0)和y2=(x>0)的图象分别交于A、B两点,OA交双曲线y2=于点C,连接CD,若△OCD的面积为2,则k= 8 .
【分析】设A(m,),则B(m,),D(m,0),设C(n,),由S△OCD=OD•yc=•m•=2,得出=2,即=.又S△OCD=S△OAD﹣S△ACD=k•=k=2,即可求出k=8.
【解答】解:设A(m,),则B(m,),D(m,0),设C(n,),
∵S△OCD=OD•yc=•m•=2,
∴=2,
∴=.
又S△OCD=S△OAD﹣S△ACD
=k﹣••(m﹣n)
=k(1﹣)
=k•
=k,
∴k=2,
∴k=8.
故答案为:8.
18如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
【考点】正方形的性质;旋转的性质.菁优网版权所有
【专题】矩形 菱形 正方形;推理能力.
【答案】.
【分析】连接OQ,OP,利用HL证明Rt△OAQ≌Rt△ODQ,得QA=DQ,同理可证:CP=DP,设CP=x,则BP=3﹣x,PQ=x+,在Rt△BPQ中,利用勾股定理列出方程(3﹣x)2+()2=(x+)2,解方程得x=,再利用△AQM∽△BQP可求解.
【解答】解:连接OQ,OP,
∵将正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
∴OA=OD,∠OAQ=∠ODQ=90°,
在Rt△OAQ和Rt△ODQ中,
,
∴Rt△OAQ≌Rt△ODQ(HL),
∴QA=DQ,
同理可证:CP=DP,
∵BQ:AQ=3:1,
∴BQ=,AQ=,
设CP=x,则BP=3﹣x,PQ=x+,
在Rt△BPQ中,由勾股定理得:
(3﹣x)2+()2=(x+)2,
解得x=,
∴BP=,
∵∠AQM=∠BQP,∠BAM=∠B,
∴△AQM∽△BQP,
∴,
∴,
∴AM=.
故答案为:.
19(1)计算:2sin60°+|﹣2|﹣()﹣1+;
(2)解不等式组,并把解集在数轴上表示出来.
(3)先化简,再求值:÷(1+),请从﹣4,﹣3,0,1中选一个合适的数作为a的值代入求值.
【考点】分式的化简求值;负整数指数幂;分母有理化;二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.菁优网版权所有
【专题】实数;分式;二次根式;一元一次不等式(组)及应用;运算能力.
【答案】(1)﹣1;
(2)﹣3<x≤﹣1,解集在数轴上表示见解答;
(3),5.
【分析】(1)根据特殊角的三角函数值、去绝对值的方法、负整数指数幂、二次根式的除法可以解答本题;
(2)先求出每个不等式的解集,然后取其公共部分,即可得到不等式组的解集,然后再在数轴上表示出来即可;
(3)根据分式的除法和加法可以化简题目中的式子,然后从﹣4,﹣3,0,1中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
【解答】解:(1)2sin60°+|﹣2|﹣()﹣1+
=2×+2﹣﹣2+﹣1
=+2﹣﹣2+﹣1
=﹣1;
(2),
解不等式①,得
x>﹣3,
解不等式②,得
x≤﹣1,
∴原不等式组的解集是﹣3<x≤﹣1,
解集在数轴上表示如下:
;
(3)÷(1+)
=
=
=,
∵a(a+3)≠0,a+4≠0,
∴a≠﹣4,﹣3,0,
∴a=1,
当a=1时,原式==5.
三、解答题(本大题共7道小题,共84分.请将解答过程写在答题卡相应的位置上.)
20如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.
(1)求证:四边形ABED为菱形;
(2)连接BD,当CE=5时,求BD的长.
【考点】菱形的判定与性质.菁优网版权所有
【专题】矩形 菱形 正方形;推理能力.
【答案】(1)证明见解析;
(2)5.
【分析】(1)连接BD,根据题意得出AM为BD的线段垂直平分线,进而利用菱形的判定解答即可.
(2)根据含30°的直角三角形的性质解答即可.
【解答】证明:(1)连接BD,
根据题意得出AM为BD的线段垂直平分线,
即BD⊥AE,
∵AD∥BC,AB=AD=CD=BC,
∴∠ADB=∠DBE,∠ABD=∠ADB,
∴∠ABD=∠DBE,
∵BD⊥AE,
∴AB=BE,
∴AD=BE,
∵AD∥BE,
∴四边形ABED是平行四边形,
∵AE⊥BD,
∴平行四边形ABED是菱形;
(2)∵AB=AD=CD=BC,BE=AD,
∴E是BC的中点,
∵DE=BE=CE=CD=5,
∴△BDC是含30°的直角三角形,
∴BD=CD=5.
21为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
(1)该校九年级共有 名学生,“D”等级所占圆心角的度数为 ;
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
【考点】扇形统计图;条形统计图;方差;列表法与树状图法.菁优网版权所有
【专题】统计的应用;概率及其应用;运算能力;推理能力.
【答案】(1)500,36°;
(2)图形见解析;
(3)此规则不合理,理由见解析.
【分析】(1)由A等级的学生除以所占的比例求出该校九年级共有的学生,即可解决问题;
(2)求出B等级的人数,将条形统计图补充完整即可;
(3)画树状图,共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,再由概率公式求出选甲乙的概率和选丙丁的概率,即可得出结论.
【解答】解:(1)该校九年级共有学生:150÷30%=500(名),
则D”等级所占圆心角的度数为:360°×=36°,
故答案为:500,36°;
(2)B等级的人数为:500﹣150﹣100﹣50=200(名),
将条形统计图补充完整如下:
(3)此规则不合理,理由如下:
画树状图如图:
共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,
∴选甲乙的概率为=,选丙丁的概率为=,
∵>,
∴此规则不合理.
22学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50,≈1.73.)
(1)求灯杆AB的高度;
(2)求CD的长度.
【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有
【专题】解直角三角形及其应用;应用意识.
【答案】(1)6m;
(2)14m.
【分析】(1)延长BA交CG于点E,根据直角三角形的性质求出AE,根据正切的定义求出CE,再根据正切的定义求出BE,计算即可;
(2)根据正切的定义求出DE,进而求出CD.
【解答】解:(1)延长BA交CG于点E,
则BE⊥CG,
在Rt△ACE中,∠ACE=30°,AC=12m,
∴AE=AC=×12=6(m),CE=AC•cosα=12×=6(m),
在Rt△BCE中,∠BCE=60°,
∴BE=CE•tan∠BCE=6×=12(m),
∴AB=BE﹣AE=12﹣6=6(m);
(2)在Rt△BDE中,∠BDE=27°,
∴DE=≈=24(m),
∴CD=DE﹣CE=24﹣6≈14(m).
23如图,双曲线y=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.
(1)求m,k,b的值;
(2)求△ABE的面积;
(3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线y=有唯一交点,求n的值.
【考点】反比例函数与一次函数的交点问题.菁优网版权所有
【专题】一次函数及其应用;反比例函数及其应用;运算能力;模型思想;应用意识.
【答案】(1)m=﹣8,k=﹣,b=﹣3;
(2);
(3)3+4.
【分析】(1)根据待定系数法,将点的坐标代入函数关系式即可求出m、k、b的值;
(2)根据点的坐标得出三角形的底和高,利用三角形的面积公式进行计算即可;
(3)求出直线DE的函数关系式,设平移后的关系式与反比例函数关系式组成方程组求解即可.
【解答】解:(1)∵双曲线y=过点A(﹣8,1),
∴m=﹣8×1=﹣8,
又∵直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),
∴,
解得k=﹣,b=﹣3,
答:m=﹣8,k=﹣,b=﹣3;
(2)由(1)可得反比例函数的关系式为y=,
直线AB的关系式为y=﹣x﹣3,
当y=0时,﹣x﹣3=0,解得x=﹣6,即C(﹣6,0),
∴OC=6,
由点E(1,0)可得OE=1,
∴EC=OE+OC=1+6=7,
∴S△ABE=S△ACE+S△BCE
=×7×1+×7×4
=;
(3)设直线DE的关系式为y=kx+b,D(0,﹣3),E(1,0)代入得,
b=﹣3,k+b=0,
∴k=3,b=﹣3,
∴直线DE的关系式为y=3x﹣3,
设DE平移后的关系式为y=3x﹣3+n,由于平移后与y=有唯一公共点,
即方程3x﹣3+n=有唯一解,
也就是关于x的方程3x2+(n﹣3)x+8=0有两个相等的实数根,
∴(n﹣3)2﹣4×3×8=0,
解得n=3+4,n=3﹣4(舍去),
∴n=3+4,
答:n的值为3+4.
24如图、△ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.
(1)求证:直线AD是⊙O的切线;
(2)若AD=2,BC=6,求图中阴影部分面积.
【考点】角平分线的性质;圆周角定理;三角形的外接圆与外心;切线的判定与性质;扇形面积的计算.菁优网版权所有
【专题】证明题;圆的有关概念及性质;运算能力;推理能力.
【答案】(1)详见解答;
(2)6π﹣9.
【分析】(1)连接OA,证明OA⊥AD即可,利用角平分线的意义以及等腰三角形的性质得以证明;
(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC.
【解答】解:(1)如图,连接OA并延长交BC于E,
∵AB=AC,△ABC内接于⊙O,
∴AE所在的直线是△ABC的对称轴,也是⊙O的对称轴,
∴∠BAE=∠CAE,
又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,
∴∠BAD+∠BAE=×180°=90°,
即AD⊥OA,
∴AD是⊙O的切线;
(2)连接OB,
∵∠OAD=∠OEC=90°,∠AOD=∠EOC,
∴△AOD∽△EOC,
∴=
设半径为r,在Rt△EOC中,有勾股定理得,
OE==,
∴=,
解得r=6(取正值),
经检验r=6是原方程的解,
即OB=OC=OA=6,
又∵BC=6,
∴△OBC是等边三角形,
∴∠BOC=60°,OE=OC=3,
∴S阴影部分=S扇形BOC﹣S△BOC
=﹣×6×3
=6π﹣9.
25已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).
(1)求抛物线的表达式;
(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;
(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.
【考点】二次函数综合题.菁优网版权所有
【专题】二次函数图象及其性质;运算能力;应用意识.
【答案】(1)y=x2﹣x﹣3;(2)P(3,﹣),有最大值;(3)D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).
【分析】(1)将A(﹣2,0)、B(6,0)、C(0,﹣3)代入y=ax2+bx+c即可求解析式;
(2)过点A作AE⊥x轴交直线BC于点E,过P作PF⊥x轴交直线BC于点F,由PF∥AE,可得=,则求的最大值即可;
(3)分三种情况讨论:当∠CBD=90°时,过点B作GH⊥x轴,过点D作DG⊥y轴,DG与GH交于点G,过点C作CH⊥y轴,CH与GH交于点H,可证明△DBG∽△BCH,求出D(3,6);当∠BCD=90°时,过点D作DK⊥y轴交于点K,可证明△OBC∽△KCD,求出D(3,﹣9);当∠BDC=90°时,线段BC的中点T(3,﹣),设D(3,m),由DT=BC,可求D(3,﹣)或D(3,﹣﹣).
【解答】解:(1)将点A(﹣2,0)、B(6,0)、C(0,﹣3)代入y=ax2+bx+c,
得,
解得,
∴y=x2﹣x﹣3;
(2)如图1,过点A作AE⊥x轴交直线BC于点E,过P作PF⊥x轴交直线BC于点F,
∴PF∥AE,
∴=,
设直线BC的解析式为y=kx+d,
∴,
∴,
∴y=x﹣3,
设P(t,t2﹣t﹣3),则F(t,t﹣3),
∴PF=t﹣3﹣t2+t+3=﹣t2+t,
∵A(﹣2,0),
∴E(﹣2,﹣4),
∴AE=4,
∴===﹣t2+t=﹣(t﹣3)2+,
∴当t=3时,有最大值,
∴P(3,﹣);
(3)∵P(3,﹣),D点在l上,
如图2,当∠CBD=90°时,
过点B作GH⊥x轴,过点D作DG⊥y轴,DG与GH交于点G,过点C作CH⊥y轴,CH与GH交于点H,
∴∠DBG+∠GDB=90°,∠DBG+∠CBH=90°,
∴∠GDB=∠CBH,
∴△DBG∽△BCH,
∴=,即=,
∴BG=6,
∴D(3,6);
如图3,当∠BCD=90°时,
过点D作DK⊥y轴交于点K,
∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°,
∴∠CDK=∠OCB,
∴△OBC∽△KCD,
∴=,即=,
∴KC=6,
∴D(3,﹣9);
如图4,当∠BDC=90°时,
线段BC的中点T(3,﹣),BC=3,
设D(3,m),
∵DT=BC,
∴|m+|=,
∴m=﹣或m=﹣﹣,
∴D(3,﹣)或D(3,﹣﹣);
综上所述:△BCD是直角三角形时,D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).
2023年四川省巴中市中考数学真题: 这是一份2023年四川省巴中市中考数学真题,共11页。
2023年四川省巴中市中考数学真题(pdf、含答案): 这是一份2023年四川省巴中市中考数学真题(pdf、含答案),文件包含2023年四川省巴中市中考数学真题答案pdf、2023年四川省巴中市中考数学真题pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
2023年四川省巴中市中考数学真题(含答案): 这是一份2023年四川省巴中市中考数学真题(含答案),共17页。试卷主要包含了若x满足,则代数式的值为,如图,是的外接圆,若,则等内容,欢迎下载使用。