- 【核心素养目标】人教A版高中数学 选择性必修一 第一单元《1.3空间向量及其运算的坐标表示》课件+教案+同步分层练习(含教学反思和答案解析) 课件 5 次下载
- 【核心素养目标】人教A版高中数学 选择性必修一 第一单元《1.4.1用空间向量研究直线、平面的位置关系(1)》课件+教案+同步分层练习(含教学反思和答案解析) 课件 4 次下载
- 【核心素养目标】人教A版高中数学 选择性必修一 第一单元《1.4.2用空间向量研究距离、夹角问题(1)》课件+教案+同步分层练习(含教学反思和答案解析) 课件 4 次下载
- 【核心素养目标】人教A版高中数学 选择性必修一 第一单元《1.4.2用空间向量研究距离、夹角问题(2)》课件+教案+同步分层练习(含教学反思和答案解析) 课件 4 次下载
- 【核心素养目标】人教A版高中数学 选择性必修一 第一单元《空间向量与立体几何》复习课件+章末练习(含答案解析) 课件 5 次下载
人教A版 (2019)选择性必修 第一册1.4 空间向量的应用完美版教学ppt课件
展开人教A版数学选择性必修第一册
1.4.1用空间向量研究直线、平面的位置关系(2)
1.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.(数学抽象)2.能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理.(逻辑推理)3.能用向量方法证明空间中直线、平面的垂直关系.(逻辑推理)
类似空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?
空间中直线、平面垂直的向量表示
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )
(4)若两平面α,β的法向量分别为u1=(1,0,1),u2=(0,2,0),则平面α,β互相垂直.( )
答案: (1)× (2)√ (3)× (4)√
2.设平面α的法向量为(1,2,-2),平面β的法向量(-2,-4,k),若α⊥β,则k=( ) A.2 B.-5 C.4 D.-2
答案:B
解析:因为α⊥β,所以-2-8-2k=0,解得k=-5.
例1如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,点F是PB的中点,点E在边BC上移动.求证:无论点E在边BC上的何处,都有PE⊥AF.
思路分析只需证明直线PE与AF的方向向量互相垂直即可.
证明:(方法1)以A为原点,以AD,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,则A(0,0,0),P(0,0,1),B(0,1,0),C(a,1,0),
延伸探究本例条件不变,求证:AF⊥BC.
利用向量方法证明线线垂直的方法(1)坐标法:建立空间直角坐标系,写出相关点的坐标,求出两直线方向向量的坐标,然后通过数量积的坐标运算法则证明数量积等于0,从而证明两条直线的方向向量互相垂直;(2)基向量法:利用空间向量的加法、减法、数乘运算及其运算律,结合图形,将两直线所在的向量用基向量表示,然后根据数量积的运算律证明两直线所在的向量的数量积等于0,从而证明两条直线的方向向量互相垂直.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.
证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则
例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.
利用空间向量证明线面垂直的方法(1)基向量法:选取基向量,用基向量表示直线所在的向量,在平面内找出两个不共线的向量,也用基向量表示,然后根据数量积运算律分别证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.(2)坐标法:建立空间直角坐标系,求出直线方向向量的坐标以及平面内两个不共线向量的坐标,然后根据数量积的坐标运算法则证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.(3)法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.
跟踪训练2 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=4, ,CD=2,PA⊥平面ABCD,PA=4. 求证:BD⊥平面PAC.
证明:因为AP⊥平面ABCD,AB⊥AD,所以以A为坐标原点,AB,AD,AP所在的直线分别为x轴、y轴、z轴建立空间直角坐标系.则B(4,0,0),P(0,0,4),
例3如图所示,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,点E为BB1的中点,证明:平面AEC1⊥平面AA1C1C.
思路分析要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n1,n2,证明n1·n2=0.
解:由题意得AB,BC,B1B两两垂直.以点B为原点,BA,BC,BB1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系.则A(2,0,0),A1(2,0,1),
1.利用空间向量证明面面垂直通常有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度.
利用空间向量证明面面垂直的方法
跟踪训练3 如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= . 求证:平面AMD⊥平面CDE.
分析:因为FA⊥平面ABCD,所以可以以点A为坐标原点建立空间直角坐标系.
金题典例 如图,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,E是B1C的中点.
解:(1)以B为坐标原点,建立如图所示的空间直角坐标系.∵AC=2a,∠ABC=90°,
(2)存在.理由如下:假设存在点F,使CF⊥平面B1DF.
应用空间向量解答探索性(存在性)问题立体几何中的存在探究题,解决思路一般有两个:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论;(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.
1.若直线l的方向向量为a=(1,-2,3),平面α的法向量为n=(-3,6,-9),则( )A.l⊂α B.l∥α C.l⊥α D.l与α相交
答案:C
解析:∵直线l的方向向量为a=(1,-2,3),平面α的法向量为n=(-3,6,-9),
2.在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,则( )A.平面AED∥平面A1FD1B.平面AED⊥平面A1FD1C.平面AED与平面A1FD1相交但不垂直D.以上都不对
答案:B
解析:以D为原点, 分别为x,y,z建立空间直角坐标系,求出平面AED的法向量n1与平面A1FD1的法向量n2.因为n1·n2=0,所以n1⊥n2,故平面AED⊥平面A1FD1.
3.若直线l的方向向量是a=(1,0,-2),平面β的法向量是b=(-1,0,2),则直线l与β的位置关系是 .
答案:l⊥β 解析:因为a∥b,所以l⊥β.
4.如图,在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F分别是AC,AD的中点,求证:平面BEF⊥平面ABC.
证明:建立空间直角坐标系,如图,取A(0,0,a),则易得B(0,0,0),
课程结束
版权声明
人教统编版高中语文选择性必修上册
教习网//www.enxinlong.com/(以下简称“本网站”)系属深圳市智学帮科技有限公司(以下简称“本公司”)旗下网站,为维护本公司合法权益,现依据相关法律法规作出如下郑重声明:1.本文件仅用于个人学习、研究,不得用于商业性或盈利性用途,不得侵犯本司及相关权利人的合法权利。一旦发现侵权,本公司将联合司法机关获取相关用户信息并要求侵权者承担相关法律责任。2.本网站上所有原创内容,是本公司依据相关法律法规,安排专项经费运营规划,组织老师创作完成,著作权归属本公司所有。3.经由网站用户上传至本网站的课件、教案、学案、试卷等内容,其作品仅代表作者本人观点,本网站不保证其内容的有效性,凡因本作品引发的任何法律纠纷,均由上传用户承担法律责任,本网站仅有义务协助司法机关了解事实情况。
兼职招募
人教统编版高中语文选择性必修上册
教习网(www.enxinlong.com)专为 K12教育老师提供同步备课资料下载、教学经验学习等服务的互联网教育平台。为了进一步完善网站的资料体系,最大化满足用户的精品资源需求,现诚邀全国各地优秀一线老师加入教习网兼职创作老师团队,参与资源建设,获取高额现金收益。兼职招募详情请看://www.enxinlong.com/article-5396.html
公益助学
人教统编版高中语文选择性必修上册
教习网诚挚地为各位老师推荐两款免费的朗读小程序,可用于课前预习、课中学习和课后复习,打开微信扫下方二维码即可使用,欢迎分享广大师生使用。
福利社群
人教统编版高中语文选择性必修上册
查看下方网页链接,扫码添加客服加入教习网专属福利社群: 更多福利,等您来领取://www.enxinlong.com/act/event/pc/fuli.html
高中数学人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.5 直线与圆、圆与圆的位置试讲课教学ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第一册第二章 直线和圆的方程2.5 直线与圆、圆与圆的位置试讲课教学ppt课件,文件包含人教A版高中数学选择性必修一第二单元251直线与圆的位置关系课件pptx、核心素养目标人教A版高中数学选择性必修一《251直线与圆的位置关系》教案含教学反思docx、人教A版高中数学选择性必修一第二单元《251直线与圆的位置关系》同步分层练习含答案解析docx等3份课件配套教学资源,其中PPT共35页, 欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用精品教学课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用精品教学课件ppt,文件包含人教A版高中数学选择性必修一第一单元142用空间向量研究夹角距离问题2课件pptx、核心素养目标人教A版高中数学选择性必修一《142用空间向量研究距离夹角问题2》教案含教学反思docx、人教A版高中数学选择性必修一第一单元《142用空间向量研究距离夹角问题2》同步分层练习含答案解析docx等3份课件配套教学资源,其中PPT共45页, 欢迎下载使用。
人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖教学课件ppt: 这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用获奖教学课件ppt,文件包含人教A版高中数学选择性必修一第一单元141用空间向量研究直线平面的位置关系1课件pptx、核心素养目标人教A版高中数学选择性必修一《141用空间向量研究直线平面的位置关系1》教案含教学反思docx、人教A版高中数学选择性必修一第一单元《141用空间向量研究直线平面的位置关系1》同步分层练习含答案解析docx等3份课件配套教学资源,其中PPT共48页, 欢迎下载使用。