终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学二轮精品专题复习 图形的旋转(解答题)

    立即下载
    加入资料篮
    中考数学二轮精品专题复习 图形的旋转(解答题)第1页
    中考数学二轮精品专题复习 图形的旋转(解答题)第2页
    中考数学二轮精品专题复习 图形的旋转(解答题)第3页
    还剩62页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮精品专题复习 图形的旋转(解答题)

    展开

    这是一份中考数学二轮精品专题复习 图形的旋转(解答题),共65页。试卷主要包含了综合与实践等内容,欢迎下载使用。
    2023年中考数学真题知识点汇编之《图形的旋转(解答题)》
    一.解答题(共19小题)
    1.(2023•大连)综合与实践
    问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
    已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:
    独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”
    小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”
    实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:

    问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.
    (1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;
    (2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.
    问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.
    问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.
    2.(2023•贵州)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.

    (1)【动手操作】
    如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为    度;
    (2)【问题探究】
    根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;
    (3)【拓展延伸】
    如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.
    3.(2023•辽宁)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.

    (1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;
    (2)如图2,当点D在线段AB上时,求证:CG+BD=2BC;
    (3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.
    4.(2023•武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
    (1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;
    (2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.

    5.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
    (1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
    (2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
    ①确定△PCF的形状,并说明理由;
    ②若AP:PB=1:2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).

    6.(2023•岳阳)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.
    初步尝试:(1)MN与AC的数量关系是    ,MN与AC的位置关系是    .
    特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.
    ①求∠BCF的度数;
    ②求CD的长.
    深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.

    7.(2023•邵阳)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.
    (1)证明:在点P的运动过程中,总有∠PEQ=120°.
    (2)当APDP为何值时,△AQF是直角三角形?

    8.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
    (1)在图1中画一个等腰三角形PEF,使底边长为2,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
    (2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.

    9.(2023•广元)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且
    ∠DBC=30°.
    (1)若∠BCD=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是    ;
    (2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;
    (3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.

    10.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为    三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由    可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB=   ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为    点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;

    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为    元.(结果用含a的式子表示)
    11.(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.
    (1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;
    (2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;
    (3)填空:∠OCB的度数为    .

    12.(2023•湖北)【问题呈现】
    △CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.
    【问题探究】
    (1)如图1,当m=1时,直接写出AD,BE的位置关系:   .
    (2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
    【拓展应用】
    (3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.

    13.(2023•安徽)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.
    (1)如图1,求∠ADB的大小;
    (2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.
    (i)如图2,连接CD,求证:BD=CD;
    (ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.

    14.(2023•巴中)综合与实践.
    (1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
    ①∠BOC的度数是    .
    ②BD:CE=   .
    (2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
    ①∠AOB的度数是    ;
    ②AD:BE=   .
    (3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
    ①说明△MND为等腰三角形.
    ②求∠MND的度数.

    15.(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).

    (1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.
    (2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.
    16.(2023•金昌)【模型建立】
    (1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.
    ①求证:AE=CD;
    ②用等式写出线段AD,BD,DF的数量关系,并说明理由;
    【模型应用】
    (2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;
    【模型迁移】
    (3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.

    17.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.
    (1)如图1,求证:∠CBE=∠CAF;
    (2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;
    (3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.

    18.(2023•达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.
    (1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;
    (2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;
    (3)在(2)的运动过程中请计算出△ABC扫过的面积.


    19.(2023•自贡)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.

    (1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;
    (2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.

    2023年中考数学真题知识点汇编之《图形的旋转(解答题)》
    参考答案与试题解析
    一.解答题(共19小题)
    1.(2023•大连)综合与实践
    问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
    已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:
    独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”
    小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”
    实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:

    问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.
    (1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;
    (2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.
    问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.
    问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.
    【考点】几何变换综合题.菁优网版权所有
    【专题】等腰三角形与直角三角形;矩形 菱形 正方形;平移、旋转与对称;推理能力.
    【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB,由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C,由邻补角的性质可得结论;
    (2)由三角形中位线定理可得CD=2EF,由勾股定理可求AF,BF,即可求解;
    问题2:先证四边形CGMD是矩形,由勾股定理可求AD,由等腰三角形的性质可求MD,CG,即可求解.
    【解答】问题1:(1)证明:∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵△BDE由△ABE翻折得到,
    ∴∠A=∠BDE=180°﹣2∠C,
    ∵∠EDC+∠BDE=180°,
    ∴∠EDC=2∠ACB;
    (2)解:如图,连接AD,交BE于点F,

    ∵△BDE由△ABE翻折得到,
    ∴AE=DE,AF=DF,
    ∴CD=2EF=3,
    ∴EF=32,
    ∵点E是AC的中点,
    ∴AE=EC=12AC=2,
    在Rt△AEF中,AF=AE2−EF2=4−94=72,
    在Rt△ABF中,BF=AB2−AF2=16−74=572,
    ∴BE=BF+EF=3+572;
    问题2:解:连接AD,过点B作BM⊥AD于M,过点C作CG⊥BM于G,

    ∵AB=BD,BM⊥AD,
    ∴AM=DM,∠ABM=∠DBM=12∠ABD,
    ∵2∠BDC=∠ABD,
    ∴∠BDC=∠DBM,
    ∴BM∥CD,
    ∴CD⊥AD,
    又∵CG⊥BM,
    ∴四边形CGMD是矩形,
    ∴CD=GM,
    在Rt△ACD中,CD=1,AD=4,AD=AC2−CD2=42−12=15,
    ∴AM=MD=152,CG=MD=152,
    在Rt△BDM中,BM=BD2−DM2=16−154=72,
    ∴BG=BM﹣GM=BM﹣CD=72−1=52,
    在Rt△BCG中,BC=BG2+CG2=254+154=10.
    【点评】本题是几何变换综合题,考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质和判定,灵活运用这些性质解决问题是解题的关键.
    2.(2023•贵州)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.

    (1)【动手操作】
    如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为  135 度;
    (2)【问题探究】
    根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;
    (3)【拓展延伸】
    如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.
    【考点】几何变换综合题.菁优网版权所有
    【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力;应用意识.
    【分析】(1)根据题意画出图形,由CA=CB,∠C=90°,得∠ABC=45°,而BD⊥AB,即得∠PBD=∠ABC+∠ABD=135°;
    (2)过P作PM∥AB交AC于M,证明△PCM是等腰直角三角形,得CP=CM,∠PMC=45°,即可证△APM≌△PEB(ASA),故PA=PE;
    (3)当P在线段BC上时,过P作PM∥AB交AC于M,结合(2)可得AB=2BP+BE;当P在线段CB的延长线上时,过P作PN⊥BC交BE于N,证明△BPN是等腰直角三角形,可得∠ABP=135°,BP=NP,BN=2BP,∠PNB=45°,即可证△EPN≌△APB(ASA),EN=BA,根据BE=EN+BN,即得BE=BA+2BP.
    【解答】解:(1)画出图形如下:

    ∵CA=CB,∠C=90°,
    ∴∠ABC=45°,
    ∵BD⊥AB,
    ∴∠ABD=90°,
    ∴∠PBD=∠ABC+∠ABD=45°+90°=135°;
    故答案为:135;
    (2)PA=PE,理由如下:
    过P作PM∥AB交AC于M,如图:

    ∴∠MPC=∠ABC=45°,
    ∴△PCM是等腰直角三角形,
    ∴CP=CM,∠PMC=45°,
    ∴CA﹣CM=CB﹣CP,即AM=BP,∠AMP=135°=∠PBE,
    ∵∠APE=90°,
    ∴∠EPB=90°﹣∠APC=∠PAC,
    ∴△APM≌△PEB(ASA),
    ∴PA=PE;
    (3)当P在线段BC上时,过P作PM∥AB交AC于M,如图:

    由(2)可知,BE=PM,BP=AM,
    ∵AB=2(AM+CM),
    ∴AB=2BP+2CM,
    ∵PM=2CM,
    ∴AB=2BP+BE;
    当P在线段CB的延长线上时,过P作PN⊥BC交BE于N,如图:

    ∵∠ABD=90°,∠ABC=45°,
    ∴∠PBN=180°﹣∠ABC﹣∠ABD=45°,
    ∴△BPN是等腰直角三角形,∠ABP=135°,
    ∴BP=NP,BN=2BP,∠PNB=45°,
    ∴∠PNE=135°=∠ABP,
    ∵∠APE=90°,
    ∴∠EPN=90°﹣∠APN=∠APB,
    ∴△EPN≌△APB(ASA),
    ∴EN=BA,
    ∵BE=EN+BN,
    ∴BE=BA+2BP;
    综上所述,当P在线段BC上时,AB=2BP+BE;当P在线段CB的延长线上时,BE=BA+2BP.
    【点评】本题考查几何变换综合应用,涉及等腰直角三角形,旋转变换,全等三角形的判定与性质等知识,解题的关键是作辅助线,构造全等三角形解决问题.
    3.(2023•辽宁)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.

    (1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;
    (2)如图2,当点D在线段AB上时,求证:CG+BD=2BC;
    (3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.
    【考点】几何变换综合题.菁优网版权所有
    【专题】分类讨论;等腰三角形与直角三角形;平移、旋转与对称;推理能力;应用意识.
    【分析】(1)连接BE,由∠ACB=90°,CA=CB,得∠A=45°,根据线段CD绕点C逆时针旋转90°,得到线段CE,有CD=CE,∠DCE=90°,可得△BCE≌△ACD(SAS),从而BE=AD,∠A=∠CBE=45°,知△BEF是等腰直角三角形,BE=2EF,故AD=2EF;
    (2)由∠ACB=90°,CA=CB,O为AB的中点,得∠COB=90°,AB=2BC,证明△CEG≌△DCA(AAS),得CG=AD,根据AD+BD=AB,即得CG+BD=2BC;
    (3)由EF:BC=1:3,设EF=m,则BC=AC=3m,分两种情况:当D在线段AB上时,延长AC交GF于K,由△CEG≌△DCA,得GE=AC=3m,而四边形BCKF是矩形,有KF=BC=3m,∠CKG=90°,根据勾股定理可得CE2=CK2+KE2=m2+(2m)2=5m2,故S1=12CD•CE=12CE2=5m22,S2=12AC•BC=9m22,即得S1S2=59;当D在射线BA上时,延长EG交AC于T,同理可得S1S2=179.
    【解答】(1)解:AD=2EF,理由如下:
    连接BE,如图:

    ∵∠ACB=90°,CA=CB,
    ∴∠A=45°,
    ∵线段CD绕点C逆时针旋转90°,得到线段CE,
    ∴CD=CE,∠DCE=90°,
    ∴∠BCE=90°﹣∠BCD=∠ACD,
    ∴△BCE≌△ACD(SAS),
    ∴BE=AD,∠A=∠CBE=45°,
    ∵直线l⊥BC,
    ∴∠EBF=45°,
    ∴△BEF是等腰直角三角形,
    ∴BE=2EF,
    ∴AD=2EF;
    (2)证明:如图,

    ∵∠ACB=90°,CA=CB,O为AB的中点,
    ∴∠COB=90°,AB=2BC,
    ∵∠BFG=90°,
    ∴∠G=360°﹣∠COB﹣∠OBF﹣∠BFG=45°=∠A,
    ∵BC⊥直线l,EF⊥直线l,
    ∴BC∥GF,
    ∴∠CEG=∠BCE,
    ∵∠BCE=90°﹣∠BCD=∠ACD,
    ∴∠CEG=∠ACD,
    ∵CE=CD,
    ∴△CEG≌△DCA(AAS),
    ∴CG=AD,
    ∵AD+BD=AB,
    ∴CG+BD=2BC;
    (3)解:由EF:BC=1:3,设EF=m,则BC=AC=3m,
    当D在线段AB上时,延长AC交GF于K,如图:

    由(2)知△CEG≌△DCA,
    ∴GE=AC=3m,
    ∵∠CBF=∠BFE=∠BCK=90°,
    ∴四边形BCKF是矩形,
    ∴KF=BC=3m,∠CKG=90°,
    ∴KE=KF﹣EF=2m,
    ∴GK=GE﹣KE=m,
    ∵∠G=45°,
    ∴CK=GK=m,
    ∴CE2=CK2+KE2=m2+(2m)2=5m2,
    ∴S1=12CD•CE=12CE2=5m22,
    ∵AC=BC=3m,
    ∴S2=12AC•BC=9m22,
    ∴S1S2=59;
    当D在射线BA上时,延长EG交AC于T,如图:

    同理可得BC=AC=EG=3m,
    ∴FG=EG﹣EF=2m,
    ∵TF=BC=3m,
    ∴TG=TF﹣FG=m,
    ∵∠ACB=90°,CA=CB,O为AB的中点,
    ∴∠AOC=45°,
    ∵BC∥EF,
    ∴∠ETC=90°,
    ∴CT=TG=m,
    ∴CE2=CT2+TE2=m2+(m+3m)2=17m2,
    ∴S1=17m22,
    ∴S1S2=179;
    综上所述,S1S2的值为59或179.
    【点评】本题考查等腰直角三角形中的旋转问题,涉及三角形全等的判定于性质,矩形的判定与性质,三角形面积等知识,解题的关键是分类讨论思想的应用.
    4.(2023•武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
    (1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;
    (2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.

    【考点】作图﹣旋转变换;全等三角形的判定与性质;作图﹣轴对称变换.菁优网版权所有
    【专题】作图题;图形的全等;平移、旋转与对称;几何直观;推理能力.
    【分析】(1)取格点F,连接BF,连接 EF,再取格点P,连接CP交EF于Q,连接BQ,延长交CD于G即可;
    (2)取格点F,连接 BF、EF,交格线于N,再取格点P,Q,连接PQ交EF于O,连接MO并延长交BD于H即可.
    【解答】解:(1)如图(1),线段BF和点G即为所求;
    理由:∵BC=BA,CF=AE,∠BCF=∠BAE=90°,
    ∴△BCF≌△BAE(SAS),
    ∴∠CBF=∠ABE,
    ∴∠FBE=∠CBF+∠CBE=∠ABE+∠CBE=∠CBA=90°,
    ∴线段BE绕点B顺时针旋转90° 得BF,
    ∵PE∥FC,
    ∴∠PEQ=∠CFQ,∠EPQ=∠FCQ,
    ∵PE=FC,
    ∴△PEQ≌△CFO(ASA),
    ∴EQ=FQ,
    ∴∠GBE=12∠EBF=45°;

    (2)如图(2)所示,点N与点H即为所求,
    理由:∵BC=BA,∠BCF=∠BAE=90°,CF=AE,
    ∴△BCF≌△BAE(SAS),
    ∴BF=BE,
    ∵DF=DE,
    ∴BF与BE 关于BD对称
    ∵BN=BM,
    ∴M,N关于BD对称,
    ∵PE/FC,
    ∴△POE∽△QOF,
    ∴EOOF=PEFQ=12,
    ∵MG∥AE
    ∴EMMB=AGGB=24=12,
    ∴EMEB=EOEF=13,
    ∵∠MEO=∠BEF,
    ∴△MEO∽△BEF,
    ∴∠EMO=∠EBF,
    ∴OM∥BF,
    ∴∠MHB=∠FBH,
    由轴对称可得∠FBH=∠EBH,
    ∴∠BHM=∠MBD.

    【点评】本题考查了作图﹣旋转变换,轴对称变换,勾股定理、勾股定理的逆定理,全等三角形的判定与性质,解决本题的关键是掌握旋转和轴对称的性质.
    5.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.
    (1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
    (2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.
    ①确定△PCF的形状,并说明理由;
    ②若AP:PB=1:2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;三角形;矩形 菱形 正方形;展开与折叠;几何直观;运算能力;推理能力.
    【分析】(1)根据新定义,画出等联角即可;
    (2)①△PCF是等腰直角三角形,过点C作CN⊥BE交BE的延长线于N,由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,证明四边形ABNC为正方形,进而证明Rt△CME≌Rt△CNE,得出∠PCF=45°,即可求解;
    ②过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°.证明△APC≌△RFP,得出AP=BR=FR,在Rt△BRF 中,BR2+FR2=BF2,BF=2k,进而证明四边形BRFQ为正方形,则BQ=QF=k,由FQ∥CN,得出△AEF∽△NEC,根据相似三角形的性质得出NE=32k,根据 PE=PM+ME即可.
    【解答】解:(1)作图如下:(方法不唯一)

    (2)①△PCF是等腰直角三角形.理由为:
    如图,过点C作CN⊥BE交BE的延长线于N.

    由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,
    ∵AC=AB,∠A=∠PBD=∠N=90°,
    ∴四边形ABNC为正方形,
    ∴CN=AC=CM,
    又∵CE=CE,
    ∴Rt△CME≌Rt△CNE(HL),
    ∴∠3=∠4,
    而∠1+∠2+∠3+∠4=90°,∠CPF=90°,
    ∴∠PCF=∠2+∠3=∠CFP=45°,
    ∴△PCF是等腰直角三角形.
    ②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,
    则∠R=∠A=90°,

    ∵∠1+∠5=∠5+∠6=90°,
    ∴∠1=∠6,
    由△PCF是等腰直角三角形知:PC=PF,
    ∴△APC≌△RFP(AAS),
    ∴AP=FR,AC=PR,
    而AC=AB,
    ∴AP=BR=FR,
    在Rt△BRF中,BR2+FR2=BF2,BF=2k,
    ∴AP=BR=FR=k,
    ∴PB=2AP=2k,
    ∴AB=AP+PB=BN=3k,
    ∵BR=FR,∠QBR=∠R=∠FQB=90°,
    ∴四边形BRFQ为正方形,BQ=OF=k,
    ∵FQ⊥BN,CN⊥BN,
    ∴FQ∥CN,
    ∴QENE=QFCN,
    而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,
    ∴2k−NENE=k3k=13,
    解得:NE=32k,
    由①知:PM=AP=k,ME=NE=32k,
    ∴PE=PM+ME=k+32k=52k,
    答:等联线AB=3k,线段PE=52k.
    【点评】本题考查了几何新定义,正方形的性质与判定,折叠问题,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,理解新定义,掌握正方形的性质是解题的关键.
    6.(2023•岳阳)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.
    初步尝试:(1)MN与AC的数量关系是  MN=12AC ,MN与AC的位置关系是  MN∥AC .
    特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.
    ①求∠BCF的度数;
    ②求CD的长.
    深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;推理能力.
    【分析】(1)AB=AC,点M,N分别为边AB,BC的中点,则MN是△ABC的中位线,即可得出结论;
    (2)特例研讨:①连接EM,MN,NF,证明△BME是等边三角形,△BNF是等边三角形,得出∠FCB=30°;
    ②连接AN,证明△ADN∽△BDE,则 DNDE=ANBE=222=2,设DE=x,则DN=2x,在Rt△ABE中,BE=2,AE=23,则AD=23−x,在Rt△ADN中,AD2=DN2+AN2,勾股定理求得x=4−23,则CD=DN+CN=2x+22=62−26;
    (3)当点C,E,F在同一直线上时,且点E在FC上时,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,得出∠BEC+∠BAC=180°,则A.B,E,C 在同一个圆上,进而根据圆周角定理得出∠EAC=∠EBC=α﹣θ,表示∠BAE与∠ABF,即可求解;当F在EC上时,可得A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,设∠NBF=β,则∠EBM=β,则 α+β=360°,表示∠BAE 与∠ABF,即可求解.
    【解答】解:(1)∵AB=AC,点M,N分别为边AB,BC的中点,
    ∴MN是△ABC的中位线,
    ∴MN=12AC,MN∥AC;
    故答案是:MN=12AC,MN∥AC;

    (2)特例研讨:①如图所示,连接EM,MN,NF,

    ∵MN是△BAC的中位线,
    ∴MN∥AC,
    ∴∠BMN=∠BAC=90°,
    ∵将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,
    ∴BE=BM,BF=BN;∠BEF=∠BMN=90°,
    ∵点A,E,F在同一直线上,
    ∴∠AEB=∠BEF=90°,
    在Rt△ABE中,M是斜边AB的中点,
    ∴ME=12AB=MB,
    ∴BM=ME=BE,
    ∴△BME是等边三角形,
    ∴∠ABE=60°,即旋转角α=60°,
    ∴∠NBF=60°,BN=BF,
    ∴△BNF是等边三角形,
    又∵BN=NC,BN=NF,
    ∴NF=NC,
    ∴∠NCF=∠NFC,
    ∴∠BNF=∠NCF+∠NFC=2∠NFC=60°,
    ∴∠FCB=30°;
    (2)如图所示,连接AN,

    ∵AB=AC,∠BAC=90° BC=42,
    ∴AB=22BC=4,∠ACB=∠ABC=45°,
    ∵∠ADN=∠BDE,∠ANB=∠BED=90°,
    ∴△ADN∽△BDE,
    ∴DNDE=ANBE=222=2,
    设DE=x,则DN=2x,
    在Rt△ABE中,BE=2,AE=23,则AD=23−x,
    在Rt△ADN中,AD2=DN2+AN2,
    ∴(23−x)2=(2x)2+(22)2,
    解得:x=4−23 或 x=−23−4 (舍去),
    ∴CD=DN+CN=2x+22=62−26;
    (3)如图所示,当点C,E,F在同一直线上时,且点E在FC上时,

    ∵AB=AC,
    ∴∠ABC=∠ACB,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,
    ∵MN是△ABC的中位线,
    ∴MN∥AC,
    ∴∠MNB=∠MBN=θ,
    ∵将△BMN绕点B顺时针旋转α,得到△BEF,
    ∴△EBF≌△MBN,∠MBE=∠NBF=α,
    ∴∠EBF=∠EFB=θ,
    ∴∠BEF=180°﹣2θ,
    ∵点C,E,F在同一直线上,
    ∴∠BEC=2θ,
    ∴∠BEC+∠BAC=180°,
    ∴A,B,E,C在同一个圆上,

    ∴∠EAC=∠EBC=α﹣θ,
    ∴∠BAE=∠BAC﹣∠EAC=(180°﹣2θ)﹣(α﹣θ)=180°﹣α﹣θ,
    ∵∠ABF=α+θ,
    ∴∠BAE+∠ABF=180°,
    如图所示,当F在EC上时,

    ∵∠BEF=∠BAC,BC=BC,
    ∴A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,
    将△BMN绕点B顺时针旋转α,得到△BEF,设∠NBF=β,则∠EBM=β,则 α+β=360°,
    ∴∠ABF=θ﹣β,
    ∵∠BFE=∠EBF=θ,∠EFB=∠FBC+∠FCB,
    ∴∠ECB=∠FCB=∠EFB﹣∠FBC=θ﹣β,
    ∵EB=EB,
    ∴∠EAB=∠ECB=θ﹣β,
    ∴∠BAE=∠ABF,
    综上所述,∠BAE=∠ABF或∠BAE+∠ABF=180°.
    【点评】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位 线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌 以上知识是解题的关键.
    7.(2023•邵阳)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.
    (1)证明:在点P的运动过程中,总有∠PEQ=120°.
    (2)当APDP为何值时,△AQF是直角三角形?

    【考点】旋转的性质;等边三角形的性质;勾股定理的逆定理.菁优网版权所有
    【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.
    【分析】(1)由旋转的性质可得PA=QA,∠PAQ=60°,通过证明点A,点P,点E,点Q四点共圆,可得∠PAQ+∠PEQ=180°,即可得结论;
    (2)由旋转的性质可得∠PAQ=60°,AP=AQ,由角的数量关系可求∠DAP=30°,∠APD=90°,即可求解.
    【解答】(1)证明:∵将△ABP绕点A逆时针方向旋转60°,
    ∴PA=QA,∠PAQ=60°,
    ∴△APQ是等边三角形,
    ∴∠AQP=60°,
    ∵DE∥BC,
    ∴∠AED=∠ACB=60°,
    ∴∠AQP=∠AED,
    ∴点A,点P,点E,点Q四点共圆,
    ∴∠PAQ+∠PEQ=180°,
    ∴∠PEQ=120°;
    (2)解:如图,

    根据题意:只有当∠AFQ=90°时,成立,
    ∵△ABP绕点A逆时针方向旋转60°,得到△ACQ,
    ∴∠PAQ=60°,AP=AQ,
    ∴△APQ是等边三角形,
    ∴∠PAQ=60°,
    ∵∠AFQ=90°,
    ∴∠PAF=∠QAF=30°,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠BCA=∠CAB=60°,
    ∵DE∥BC,
    ∴∠ADP=∠ABC=60°,
    ∴∠DAP=30°,∠APD=90°,
    ∴tan∠ADP=tan60°=APPD=3.
    【点评】本题考查了旋转的性质,等边三角形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.
    8.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).
    (1)在图1中画一个等腰三角形PEF,使底边长为2,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;
    (2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.

    【考点】作图﹣旋转变换;等腰三角形的判定与性质;直角三角形的性质;勾股定理;作图﹣平移变换.菁优网版权所有
    【专题】作图题;几何直观.
    【分析】(1)跟进一下作出图形即可;
    (2)作等腰直角三角形PQR,可得结论.
    【解答】解:(1)图形如图1所示(答案不唯一);
    (2)图形如图2所示(答案不唯一).

    【点评】本题考查作图﹣旋转变换,平移变换等知识,解题的关键是掌握在旋转变换,平移变换的性质,属于中考常考题型.
    9.(2023•广元)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且
    ∠DBC=30°.
    (1)若∠BCD=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是  AC=233DE ;
    (2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;
    (3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.
    【分析】(1)证明△ABEC∽△CBD,根据相似三角形的性质得出ABBC=BEBD,∠DBE=∠CBA,进而证明△ABC∽△EBD,根据相似三角形的性质即可求解;
    (2)求出AE=2,延长DE交AB于点F,在Rt△AEF 中,由直角三角形的性质求得EF,AF,进而求得BF的长,根据(1 的结论,得出 DE=3,在Rt△BFD中,勾股定理求得BD,进而根据△ABC∽△EBD,即可求出案.
    (3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,同(1)可得△BDE∽△BCA,求出AE的长,进而得出D在以E为圆心,433为半径的圆上运动,当点A,E,D 三点共线时,AD的值最大,进而求得 cos∠BDA=277,sin∠BDA=217,根据△ABC∽△EBD得出∠BDE=∠BCA,过点A作AF⊥BC于点F,由直角三角形的性质分别求得AF,CF,然后求出BF,最后根据正切的定义即可得出答案.
    【解答】解:(1)在Rt△BDC中,∠DBC=30°,在Rt△BAE中,∠AEB=90°,∠EBA=30°,
    ∴△ABE∽△CBD,∠DBE+∠EBC=∠ABC+∠EBC,BE=AB×cos∠ABE=32AB,
    ∴ABBC=BEBD,∠DBE=∠CBA,
    ∴△ABC∽△EBD,
    ∴ACDE=ABBE=AB32AB=233,
    ∴AC=233DE,
    故答案为:AC=233DE;
    (2)在Rt△BAE,∠AEB=90°,∠EBA=30°,AB=4,
    ∴AE=AB•sin∠EBA=12AB=2,∠BAE=60°,
    延长DE交AB于点F,如图所示,

    ∴EF=AE×sin∠BAE=32×2=3,AF=12AE=1,
    ∴BF=AB﹣AF=4﹣1=3,
    由(1)可得AC=233DE,
    ∴DE=32AC=3,
    ∴DF=DE+EF=23,
    在Rt△BFD中,BD=BF2+DF2=32+(23)2=21,
    ∵△ABC∽△EBD,
    ∴BCBD=ACDE=233,
    ∴BC=233×21=27,
    即BC=27;
    (3)如图所示,以AB为边在AB上方作Rt△BAE,且∠EAB=90°,∠EBA=30°,连接BE,EA,ED,EC,

    同(1)可得△BDE∽△BCA,
    ∴DEAC=BDBC=233,
    ∵AC=2,
    ∴DE=433,
    在Rt△AEB中,AB=4,AE=AB×tan∠EBA=4×33=433,
    ∴D在以E为圆心,433为半径的圆上运动,
    ∴当点A,E,D三点共线时,AD的值最大,此时如图所示,则AD=AE+DE=833,
    在Rt△ABD中,BD=AB2+AD2=42+(833)2=4213,
    ∴cos∠BDA=ADBD=8334213=277,sin∠BDA=ABBD=44213=217,
    ∵∠BEA=90°,
    ∴∠BED=90°,
    ∵△ABC∽△EBD,
    ∴∠BDE=∠BCA,
    过点A作AF⊥BC于点F,

    ∴CF=AC×cos∠ACB=2×277=477,AF=AC×sin∠ACB=2217,
    ∵∠DBC=30°,
    ∴BC=32BD=32×4213=27,
    ∴BF=BC−CF=27−477=1077,
    Rt△AFB中,tan∠CBA=AFBF=22171077=35.
    【点评】本题是几何变换综合题,考查了旋转的性质,直角三角形的性质,相似三角形的性质与判定,勾股定理,解直角三角形,锐角三角函数的定义,熟练掌握解直角三角形及相似三角形的性质与判定是解题的关键.
    10.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为  等边 三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由  两点之间线段最短 可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB= 120° ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为  A 点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;

    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为  213a 元.(结果用含a的式子表示)
    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;推理能力.
    【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析后即可得出结论,然后填空即可;
    (2)根据(1)的方法将△APC绕点C顺时针旋转60°得到△A'P'C,即可得出可知当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,再根据∠ACB=30°可证明∠ACA'=90°,根据勾股定理即可求出A'B;
    (3)根据总铺设成本=a(PA+PB+2PC),将△APC绕点C顺时针旋转90°得到△A'P'C,得到等腰直角△PP'C,推出PP'=2PC,即可得出当B、P、P'、A在同一条直线上时,P'A'+PB+PP'取最小值,即PA+PB+2PC取最小值为A'B的长,然后根据已知条件和旋转的性质求出A'B即可.
    【解答】解:(1)∵PC=P'C,∠PCP'=60°,
    ∴△PCP'为等边三角形,
    ∴PP'=PC,∠P'PC=∠PP'C=60°,
    又∵P'A'=PA,
    ∴PA+PB+PC=PA'+PB+PP'≥A'B,
    根据两点之间线段最短可知,当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    此时的P点为该三角形的“费马点”,
    ∴∠BPC+∠P'PC=180°,∠A'P'C+∠PP'C=180°,
    ∴∠BPC=120°,∠A'P'C=120°,
    ∵将△APC绕点C顺时针旋转60°得到△A′P′C,
    ∴△APC≌△A'P'C,
    ∴∠APC=∠AP'C'=120°,
    ∴∠APB=360°﹣120°﹣120°=120°,
    ∴∠APC=∠BPC=∠APB=120°,
    ∵∠BAC≥120°,
    ∴BC>AC,BC>AB,
    ∴BC+AB>AC+AB,BC+AC>AB+AC,
    ∴三个顶点中顶点A到另外两个顶点的距离和最小,
    又∵已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点,
    ∴该三角形的“费马点”为点A.
    故答案为:等边;两点之间线段最短;120°;A;
    (2)如图4,将△APC绕点C顺时针旋转60°得到△A'P'C,连接PP',

    由(1)可知当B、P、P'、A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    ∵∠ACP=∠A'CP',
    ∴∠ACP+∠BCP=∠A'CP'+∠BCP=∠ACB=30°,
    又∵∠PCP'=60°,
    ∴∠BCA'=90°,
    根据旋转的性质可知:AC=A'C=3,
    ∴A'B=42+32=5,
    即PA+PB+PC的最小值为5;
    (3)∵总铺设成本=PA×a+PB×a+PC×2a=a(PA+PB+2PC),
    ∴当PA+PB+2PC最小时,总铺设成本最低,
    将△APC绕点C顺时针旋转90°得到△A'P'C,连接PP',A'B,

    由旋转性质可知:P'C=PC,∠PCP'=∠ACA'=90°,P'A'=PA,A'C=AC=4km,
    ∴PP'=2PC,
    ∴PA+PB+2PC=P'A'+PB+PP',
    当B、P、P'、A在同一条直线上时,P'A'+PB+PP'取最小值,
    即PA+PB+2PC取最小值为A'B,
    过点A'作A'H⊥BC于H,
    ∵∠ACB=60°,∠ACA'=90°,
    ∴∠A'CH=30°,
    ∴A'H=12A'C=2km,
    ∴HC=A′C2−A′H2=42−22=23(km),
    ∴BH=BC+CH=23+23=4(km),
    ∴A'B=AH2+BH2=(43)2+22=213(km),
    即PA+PB+2PC的最小值为213km,
    总铺设成本为:总铺设成本=a(PA+PB+2PC)=213a(元).
    故答案为:213a.
    【点评】本题是几何变换综合题,主要考查旋转的性质,全等三角形的判定和性质,两点之间线段最短以及等边三角形的性质,深入理解题意是解决问题的关键.
    11.(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.
    (1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;
    (2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;
    (3)填空:∠OCB的度数为  45° .

    【考点】作图﹣旋转变换;勾股定理;勾股定理的逆定理;作图﹣轴对称变换.菁优网版权所有
    【专题】作图题;几何直观;推理能力.
    【分析】(1)利用网格特点和旋转的性质画出点A的对称点B,从而得到OB;
    (2)延长AO到C点使OC=OA,则△COB满足条件;
    (3)先根据旋转的性质得到OB=OA,∠AOB=90°,则可判断△OAB为等腰直角三角形,所以∠OAB=45°,然后利用对称的性质得到∠OCB的度数.
    【解答】解:(1)如图,OB为所作;
    (2)如图,△COB为所作;

    (3)∵线段OA绕点O顺时针旋转90°后得到的线段OB,
    ∴OB=OA,∠AOB=90°,
    ∴△OAB为等腰直角三角形,
    ∴∠OAB=45°,
    ∵△COB与△AOB关于直线OB对称,
    ∴∠OCB=∠OAB=45°.
    故答案为:45°.
    【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.
    12.(2023•湖北)【问题呈现】
    △CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.
    【问题探究】
    (1)如图1,当m=1时,直接写出AD,BE的位置关系: AD⊥BE .
    (2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
    【拓展应用】
    (3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.

    【考点】几何变换综合题.菁优网版权所有
    【专题】图形的全等;等腰三角形与直角三角形;图形的相似;推理能力.
    【分析】(1)由“SAS”可证△ACD≌△BCE,可得∠DAC=∠CBE,由余角的性质可证AD⊥BE;
    (2)通过证明△DCA∽△ECB,可得∠DAC=∠CBE,由余角的性质可证AD⊥BE;
    (3)分两种情况讨论,由相似三角形的性质可得BE=3AD,由勾股定理可求解.
    【解答】解:(1)如图1,延长BE交AC于点H,交AD于N,

    当m=1时,DC=CE,CB=CA,
    ∵∠ACB=∠DCE=90°,
    ∴∠ACD=∠BCE,
    ∴△ACD≌△BCE(SAS),
    ∴∠DAC=∠CBE,
    ∵∠CAB+∠ABE+∠CBE=90°,
    ∴∠CAB+∠ABE+∠DAC=90°,
    ∴∠ANB=90°,
    ∴AD⊥BE,
    故答案为:AD⊥BE;
    (2)(1)中的结论成立,理由如下:
    如图2,延长BE交AC于点H,交AD于N,

    ∵∠ACB=∠DCE=90°,
    ∴∠ACD=∠BCE,
    又∵DCCE=ACBC=1m,
    ∴△DCA∽△ECB,
    ∴∠DAC=∠CBE,
    ∵∠CAB+∠ABE+∠CBE=90°,
    ∴∠CAB+∠ABE+∠DAC=90°,
    ∴∠ANB=90°,
    ∴AD⊥BE,
    (3)如图3,当点E在线段AD上时,连接BE,

    ∵△DCA∽△ECB,
    ∴BEAD=BCAC=m=3,
    ∴BE=3AD=3(4+AE),
    ∵AD⊥BE,
    ∵∴AB2=AE2+BE2,
    ∴112=AE2+3(4+AE)2,
    ∴AE=2或AE=﹣8(舍去),
    ∴BE=63,
    当点D在线段AE上时,连接BE,

    ∵△DCA∽△ECB,
    ∴BEAD=BCAC=m=3,
    ∴BE=3AD=3(AE﹣4),
    ∵AD⊥BE,
    ∵∴AB2=AE2+BE2,
    ∴112=AE2+3(AE﹣4)2,
    ∴AE=8或AE=﹣2(舍去),
    ∴BE=43,
    综上所述:BE=63或43.
    【点评】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.
    13.(2023•安徽)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.
    (1)如图1,求∠ADB的大小;
    (2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.
    (i)如图2,连接CD,求证:BD=CD;
    (ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;等腰三角形与直角三角形;多边形与平行四边形;矩形 菱形 正方形;平移、旋转与对称;圆的有关概念及性质;解直角三角形及其应用;运算能力;推理能力.
    【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;
    (2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得BD=CD,即可得出结论;
    (ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.
    【解答】(1)解:∵M是AB的中点,
    ∴MA=MB,
    由旋转的性质得:MA=MD=MB,
    ∴∠MAD=∠MDA,∠MDB=∠MBD,
    ∵∠MAD+∠MDA+∠MDB+∠MBD=180°,
    ∴∠ADB=∠MDA+∠MDB=90°,
    即∠ADB的大小为90°;
    (2)(i)证明:∵∠ADB=90°,
    ∴AD⊥BD,
    ∵ME⊥AD,
    ∴ME∥BD,
    ∵ED∥BM,
    ∴四边形EMBD是平行四边形,
    ∴DE=BM=AM,
    ∴DE∥AM,
    ∴四边形EAMD是平行四边形,
    ∵EM⊥AD,
    ∴平行四边形EAMD是菱形,
    ∴∠BAD=∠CAD,
    又∵∠ACB=∠ADB=90°,
    ∴A、C、D、B四点共圆,
    ∵∠BCD=∠CAD,
    ∴BD=CD,
    ∴BD=CD;
    (ii)解:如图3,过点E作EH⊥AB于点H,

    则∠EHA=∠EHB=90°,
    在Rt△ABC中,由勾股定理得:AB=AC2+BC2=82+62=10,
    ∵四边形EAMD是菱形,
    ∴AE=AM=12AB=5,
    ∴sin∠CAB=BCAB=610=35,
    ∴EH=AE•sin∠CAB=5×35=3,
    ∴AH=AE2−EH2=52−32=4,
    ∴BH=AB﹣AH=10﹣4=6,
    ∴tan∠ABE=EHBH=36=12,
    即tan∠ABE的值为12.
    【点评】本题是几何变换综合题目,考查了旋转的性质,平行四边形的判定与性质,菱形的判定与性质,等腰三角形的性质,勾股定理,四点共圆,圆周角定理以及锐角三角函数定义等知识,本题综合性强,熟练掌握菱形的判定与性质、等腰三角形的性质以及锐角三角函数是解题的关键,属于中考常考题型.
    14.(2023•巴中)综合与实践.
    (1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
    ①∠BOC的度数是  90° .
    ②BD:CE= 1:1 .
    (2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
    ①∠AOB的度数是  45° ;
    ②AD:BE= 1:2 .
    (3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
    ①说明△MND为等腰三角形.
    ②求∠MND的度数.

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何综合题;模型思想.
    【分析】(1)(2)从图形可辩知,这个是手拉手全等或相似模型,按模型的相关结论解题.
    (3)稍有变化,受前两问的启发,连接BF、CE完成手拉手的构造,再结合三角形中位线知识解题.
    【解答】解:(1)①∵∠BAC=∠DAE=90°,
    ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
    ∴∠BAD=∠CAE.
    又∵AB=AC,AD=AE,
    ∴△BAD≌△CAE(SAS).
    ∴∠ABD=∠ACE,
    ∵∠BAC=90°,
    ∴∠ABC+∠ACB=∠ABD+∠OBC+∠ACB=90°,
    ∴∠ACE+∠OBC+∠ACB=90°,
    即:∠BCE+∠OBC=90°,
    ∴∠BOC=90°.
    故∠BOC的度数是90°.
    ②由①得△BAD≌△CAE,
    ∴BD=CE.
    故BD:CE=1:1.
    (2)①∵AB=AC,DE=DC,
    ∴ABDE=ACDC,
    又∵∠BAC=∠EDC=90°,
    ∴△ABC∽△DEC,
    ∴∠ACB=∠DCB,BCAC=ECDC.
    ∴∠ACE+∠ECB=∠DCA+∠ACE,
    ∴∠ECB=∠DCA.
    ∴△ECB∽△DCA,
    ∴∠CBE=∠CAD,
    ∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣∠ABO﹣∠CAD﹣∠BAC=180°﹣∠ABO﹣∠CBE﹣90°=180°﹣45°﹣90°=45°.
    故∠AOB 的度数是45°.
    ②由①得:△ECB∽△DCA.
    ∴AD:BE=DC:EC,
    ∵∠EDC=90°,且DE=DC,
    ∴∠DCE=45°,
    ∴DCEC=cos45°=22.
    ∴AD:BE=1:2.
    (3)①解:连接BF、CE,延长CE交MN于点P,交BF于点O.
    在等边△ABC中AB=AC,又∵AD⊥BC于点D,
    ∴D为BC的中点,
    又∵M为EF的中点,N为BE的中点,
    ∴MN、ND分别是在△BEF、△BCE的中位线,
    ∴MN=12BF,DN=11EC.
    ∵∠FAE=∠BAC=60°,
    ∴∠FAE+∠EAB=∠BAC+∠EAB.
    ∴∠FAB=∠EAC.
    在△ACE和△ABF中,
    AF=AE∠FAB=∠EACAB=AC,
    ∴△ACE≌△ABF(SAS).
    ∴BF=EC.
    ∴MN=DN.
    ∴△MND为等腰三角形.
    ②∵△ACE≌△ABF,
    ∴∠ACE=∠ABF,
    由(1)(2)规律可知:∠BOC=60°,
    ∴∠FOC=180°﹣∠BOC=180°﹣60°=120°,
    又∵BF∥MN,CP∥DN,
    ∴∠MND=∠MPE=∠FOC=120°.

    【点评】本题考查了全等三角形的判定与性质及相似三角形的判定及性质.方法灵活多变,需要较强的构造能力.
    15.(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).

    (1)在图1中先画出一个以格点P为顶点的等腰三角形PAB,再画出该三角形向右平移2个单位后的△P′A′B′.
    (2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.
    【考点】作图﹣旋转变换;作图﹣平移变换.菁优网版权所有
    【专题】作图题;平移、旋转与对称;几何直观.
    【分析】(1)根据等腰三角形的定义,平移变换的性质作出图形即可;
    (2)根据旋转变换的性质作出图形即可.
    【解答】解:(1)如图1,△P′A′B′即为所求;

    (2)如图2,△A′B′C即为所求.
    【点评】本题考查作图﹣旋转变换,平移变换,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    16.(2023•金昌)【模型建立】
    (1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.
    ①求证:AE=CD;
    ②用等式写出线段AD,BD,DF的数量关系,并说明理由;
    【模型应用】
    (2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;
    【模型迁移】
    (3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.

    【考点】几何变换综合题.菁优网版权所有
    【专题】几何变换;几何直观.
    【分析】(1)①根据△ABC和△BDE都是等边三角形推出判定△ABE和△CBD全等,然后根据全等三角形的对应边相等即可得证;
    ②根据等边三角形的性质和对称的性质即可推出线段AD,BD,DF的数量关系;
    (2)过点B作BE⊥AD于E,根据等腰直角三角形的性质推出判定△ABE∽△CBD,然后根据等腰直角三角形的性质和对称性即可推出线段AD,BD,DF的数量关系;
    (3)过点A作AG⊥BD于G,推出△ADG是等腰直角三角形,求出AG、FG、AF的长后即可求出cos∠AFB的值.
    【解答】(1)证明:①∵△ABC和△BDE都是等边三角形,
    ∴AB=CB,EB=DB,∠ABC=∠EBD=60°,
    ∴∠ABE=∠CBD,
    ∴△ABE≌△CBD,
    ∴AE=CD;
    ②解:AD=BD+DF.
    理由如下:
    ∵△BDE是等边三角形,
    ∴BD=DE,
    ∵点C与点F关于AD对称,
    ∴CD=DF,
    ∵AD=AE+DE,
    ∴AD=BD+DF;
    (2)BD+DF=2AD.
    理由如下:
    如图1,过点B作BE⊥AD于E,

    ∵点C与点F关于AD对称,
    ∴∠ADC=∠ADB,
    又∵CD⊥BD,
    ∴∠ADC=∠ADB=45°,
    又∵BE⊥AD,
    ∴△BDE是等腰直角三角形,
    又∵△ABC是等腰直角三角形,
    ∴ABBC=BEBD=22,∠ABC=∠EBD=45°,
    ∴∠ABE=∠CBD,
    ∴△ABE∽△CBD,
    ∴CDAE=BCAB=2,CD=DF,
    ∴DF=2AE,
    ∵△BDE是等腰直角三角形,
    ∴BD=2DE,
    ∴BD+DF=2(DE+AE)=2AD,
    即:BD+DF=2AD.
    (3)解:如图2,过点A作AG⊥BD于G,

    又∵∠ADB=45°,
    ∴△AGD是等腰直角三角形,
    又∵AD=42,
    ∴AG=DG=4,BD+DF=2AD=8,
    ∵BD=3CD,CD=DF,
    ∴DF=2,
    又∵DG=4,
    ∴FG=DG﹣DF=2,
    在Rt△AFG中,由勾股定理得:AF=AG2+FG2=42+22=25,
    ∴cos∠AFB=FGAF=225=55.
    【点评】本题是几何变换综合题,主要考查等边三角形的性质,等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理,深入理解题意是解决问题的关键.
    17.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.
    (1)如图1,求证:∠CBE=∠CAF;
    (2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;
    (3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.

    【考点】几何变换综合题.菁优网版权所有
    【专题】图形的全等;平移、旋转与对称;推理能力.
    【分析】(1)根据旋转的性质得出CE=CF,∠ECF=60°,进而证明△BCE≌AACF(SAS),即可得证;试(2)过点F作FKIIAD,交DH点的延长线于点K,连接EK,FD,证明四边形四边形EDFK是平行四边形,即可得证;(3)如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,根据折叠的性质可得∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,进而得出△ADR是等边三角形,由(2)可得RtACED≌RtACFG,得出四边形GDQF是平行四边形,则QF=DC=﹣4C=2.进而得出CPGQ=360°﹣2C 4GD=120°,则PQ=√3pG=√3GQ,当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,即可求解.(1)由“SAS”可证△ACF≌△BCE,可得结论;
    (2)
    【解答】(1)证明:∵△ABC为等边三角形,
    ∴∠ACB=60°,AC=BC,
    ∵将CE绕点C顺时针旋转60°得到线段CF,
    ∴CE=CF,∠ECF=60°,
    ∵△ABC是等边三角形,
    ∴∠BCA=∠ECF,
    ∴∠BCE=∠ACF,
    ∴△BCE≌△ACF(SAS),
    ∴∠CBE=∠CAF;
    (2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,

    ∵△ABC是等边三角形,
    ∴AB=AC=BC,
    ∵AD⊥BC,
    ∴BD=CD,
    ∴AD垂直平分BC,
    ∴EB=EC,
    又∵△BCE≌△ACF,
    ∴AF=BE,CF=CE,
    ∴AF=CF,
    ∴F在AC的垂直平分线上,
    ∵AB=BC,
    ∴B在AC的垂直平分线上,
    ∴BF垂直平分AC,
    ∴AC⊥BF,AG=CG=12AC,
    ∴∠AGF=90°,
    又∵DG=12AC=CG,∠ACD=60°,
    ∴△DCG是等边三角形,
    ∴∠CGD=∠CDG=60°,
    ∴∠AGH=∠DGC=60°,
    ∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,
    又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,
    ∴∠HKF=∠ADK=30°,
    ∴∠FKG=∠KGF=30°,
    ∴FG=FK,
    在Rt△CED与Rt△CGF中,
    CF=CECD=CG,
    ∴Rt△CED≌Rt△CFG,
    ∴GF=ED,
    ∴ED=FK,
    ∴四边形EDFK是平行四边形,
    ∴EH=HF;
    解法二:连接CH,证明∠CHE=90°,可得结论.
    (3)解:依题意,如图所示,延长AP,DQ交于点R,

    由(2)可知△DCG是等边三角形,
    ∴∠EDG=30°,
    ∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,
    ∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,
    ∴∠PAE=∠QDE=60°,
    ∴△ADR是等边三角形,
    ∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,
    由(2)可得Rt△CED≌Rt△CFG,
    ∴DE=GF,
    ∴DE=DQ,
    ∴GF=DQ,
    ∵∠GBC=∠QDC=30°,
    ∴GF∥DQ,
    ∴四边形GDQF是平行四边形,
    ∴QF=DG=12AC=2,
    由(2)可知G是AC的中点,则GA=GD,
    ∴∠GAD=∠GDA=30°,
    ∴∠AGD=120°,
    ∵折叠,
    ∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,
    ∴∠PGQ=360°﹣2∠AGD=120°,
    又PG=GE=GQ,
    ∴PQ=3PG=3GQ,
    ∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,

    ∴GQ=12GC=12DC=1,
    ∴PQ=3,
    ∴PQ+QF=3+2.
    解法二:由两次翻折,推得∠PGQ=360°﹣240°=120°,则PQ=3PG=3EG,

    由QF=DG=2,推出PQ1+QF的最小值,只需要求出EG的最小值,
    当EG⊥AD时,EG的值最小,最小值为1,
    ∴PQ+QF的最小值为3+2.
    【点评】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.
    18.(2023•达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.
    (1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;
    (2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;
    (3)在(2)的运动过程中请计算出△ABC扫过的面积.


    【考点】作图﹣旋转变换;作图﹣平移变换.菁优网版权所有
    【专题】计算题;作图题;空间观念;运算能力.
    【分析】(1)按平移变换的性质分别确定A,B,C平移后的位置,再按原来的连接方式连接即可;
    (2)按旋转变换的性质分别确定A,B,C绕点C顺时针旋转90度后的位置,再按原来的连接方式连接即可;
    (3)将△ABC扫过的面积用规则图形的面积和差表示,求出即可.
    【解答】解:(1)△A1B1C1如图所示;

    (2)△A2B2C2如图所示;
    (3)S△ABC=2×3−12×2×1−12×2×1−12×3×1=52,
    ∵AC=12+32=10,
    ∴S扇形CAA2=90π(10)2360=52π,
    ∴在(2)的运动过程中△ABC扫过的面积=S扇形CAA2+S△ABC=52π+52.
    【点评】本题考查网格作图﹣平移、旋转,以及网格中图形面积的计算,解题涉及平移的性质,旋转的性质,勾股定理,扇形面积公式,掌握平移、旋转的性质和网格中图形面积的计算方法是解题的关键.
    19.(2023•自贡)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.

    (1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;
    (2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.
    【考点】旋转的性质;勾股定理;等腰直角三角形.菁优网版权所有
    【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.
    【分析】(1)以C为圆心,CM长为半径画圆,连接CN交DE于M1,延长NC交圆于M2,由等腰直角三角形的性质,推出CN平分∠ACB,CN=12AB=12×4=2,M1是DE中点,CM1=12DE=12×2=1,即可求出M、N距离的最小值和最大值;
    (2)连接CM,CN,作NH⊥MC交MC延长线于H,由等腰直角三角形的性质推出CN=12AB=2,CM=12DE=1,由旋转的性质得到∠NCH=180°﹣∠MCN=60°,由直角三角形的性质得到CH=12CN=1,NH=3CH=3,由勾股定理即可求出MN=MH2+NH2=7.
    【解答】解:(1)以C为圆心,CM长为半径画圆,连接CN交DE于M1,延长NC交圆于M2,
    ∵△ACB是等腰直角三角形,N是AB中点,
    ∴CN平分∠ACB,CN=12AB=12×4=2,
    ∵△DCE是等腰直角三角形,
    ∴M1是DE中点,
    ∴CM1=12DE=12×2=1,
    ∴M、N距离的最小值是NM1=CN﹣CM1=2﹣1=1,M、N距离的最大值是NM2=CN+CM2=2+1=3.
    (2)连接CM,CN,作NH⊥MC交MC延长线于H,
    ∵△ACB是等腰直角三角形,N是AB中点,
    ∴CN=12AB=2,
    同理:CM=12DE=1,
    ∵△CDE绕顶点C逆时针旋转120°,
    ∴∠MCN=120°,
    ∴∠NCH=180°﹣∠MCN=60°,
    ∴CH=12CN=1,
    ∴NH=3CH=3,
    ∵MH=MC+CH=2,
    ∴MN=MH2+NH2=7.

    【点评】本题考查等腰直角三角形,勾股定理,旋转的性质,关键是以C为圆心,CM的长为半径作辅助圆;通过作辅助线构造直角三角形.

    考点卡片
    1.全等三角形的判定与性质
    (1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    (2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    2.等腰三角形的判定与性质
    1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
    2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.
    3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.
    3.等边三角形的性质
    (1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
    ①它可以作为判定一个三角形是否为等边三角形的方法;
    ②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
    (2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
    4.直角三角形的性质
    (1)有一个角为90°的三角形,叫做直角三角形.
    (2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
    性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).
    性质2:在直角三角形中,两个锐角互余.
    性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)
    性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积. 性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
    在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.
    5.勾股定理
    (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    (2)勾股定理应用的前提条件是在直角三角形中.
    (3)勾股定理公式a2+b2=c2 的变形有:a=c2−b2,b=c2−a2及c=a2+b2.
    (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
    6.勾股定理的逆定理
    (1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    说明:
    ①勾股定理的逆定理验证利用了三角形的全等.
    ②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.
    (2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.
    注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
    7.等腰直角三角形
    (1)两条直角边相等的直角三角形叫做等腰直角三角形.
    (2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
    (3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.
    8.作图-轴对称变换
    几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:
    ①由已知点出发向所给直线作垂线,并确定垂足;
    ②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;
    ③连接这些对称点,就得到原图形的轴对称图形.
    9.作图-平移变换
    (1)确定平移后图形的基本要素有两个:平移方向、平移距离.
    (2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    10.旋转的性质
    (1)旋转的性质:
        ①对应点到旋转中心的距离相等.    ②对应点与旋转中心所连线段的夹角等于旋转角.    ③旋转前、后的图形全等.  (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.    注意:三要素中只要任意改变一个,图形就会不一样.
    11.作图-旋转变换
    (1)旋转图形的作法:
    根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    (2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.
    12.几何变换综合题
    几何变换综合题.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/9 9:10:07;用户:组卷3;邮箱:zyb003@xyh.com;学号:41418966

    相关试卷

    中考数学二轮精品专题复习 图形的旋转(填空题):

    这是一份中考数学二轮精品专题复习 图形的旋转(填空题),共28页。

    中考数学二轮精品专题复习 图形的旋转(选择题):

    这是一份中考数学二轮精品专题复习 图形的旋转(选择题),共35页。

    中考数学二轮精品专题复习 整式(解答题):

    这是一份中考数学二轮精品专题复习 整式(解答题),共15页。试卷主要包含了,其中a=33, 其中a=﹣1,b=14,+3a2,其中a=−13,2−25+|﹣4|;,计算,2,其中a=﹣3,b=13,的值等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map