初中数学湘教版八年级下册2.5.2矩形的判定同步测试题
展开1. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量四边形的其中三个角是否都为直角
2. 下列关于矩形的说法中正确的是( )
A.对角线相等的四边形是矩形
B.矩形的对角线相等且互相平分
C.对角线互相平分的四边形是矩形
D.矩形的对角线互相垂直且平分
3. 如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
A.AB=BC B.AC⊥BD C.AC=BD D.∠1=∠2
4. 已知:如图,□ABCD的四个内角的角平分线分别交于E,F,G,H.试说明四边形EFGH的形状是( ).
A.平行四边形 B.矩形 C.任意四边形 D.不能判断其形状
5. 如图,四边形ABCD的对角线AC,BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.则不能使四边形ABCD成为矩形的是( )
A.①②③ B.②③④ C.②⑤⑥ D.④⑤⑥
6. 在□ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的条件是( )
A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC
7. 如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )
A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC
8. 如图△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )
A.2 B.3 C.4 D.4
二、填空题(本大题共6小题)
9. 如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为__________度时,四边形ABFE为矩形.
10. 如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件 ,使四边形DBCE是矩形.
11. 在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.若DE=BC,则判断四边形BFCE是 形.
12. 如图,从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为__________(只填写拼图板的代码).
13. 如图所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG.若AB=2,BC=1,则AG的长是 .
14. 如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为 .
三、计算题(本大题共3小题)
15. 如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.
求证:四边形BECD是矩形.
16. 如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BFDE为矩形.
17. 如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.
(1)求证:△BEF≌△CDF;
(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.
参考答案:
一、选择题(本大题共8小题)
1. D
分析:根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
解:A、对角线是否相互平分,能判定平行四边形;
B、两组对边是否分别相等,能判定平行四边形;
C、一组对角是否都为直角,不能判定形状;
D、其中四边形中三个角都为直角,能判定矩形.故选D.
2. B
分析:根据矩形的性质和判定定理逐个判断即可.
解:A、对角线相等的平行四边形才是矩形,故本选项错误;
B、矩形的对角线相等且互相平分,故本选项正确;
C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;
D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.
3. C
分析:根据一个角是90度的平行四边形是矩形进行选择即可.
解:A、是邻边相等,不能判定平行四边形ABCD是矩形;
B、是对角线互相垂直,不能判定平行四边形ABCD是矩形;
C、是一内角等于90°,可判断平行四边形ABCD成为矩形;
D、是对角线平分对角,不能判定平行四边形ABCD是矩形.故选C.
4. B
分析:可利用角的变化来证明所形成的图形形状。
解:证明:设∠A的角平分线为AE ∠D的角平分线为DE ∵∠A+∠D=180°∴∠DAE+∠ADE=90°∴∠AED=90°即AE⊥DE垂足为E 同理可证明 ∠B ∠C的角平分线BG CG也互相垂直 在四边形EFGH中,两个内角都为90° ∴四边形EFGH是矩形
5. C
分析:经过分析,习题“已知:四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平...”主要考察你对“平行四边形的判定” 等考点的理解。
解:(1)①与②:∵AB∥CD,OA=OC
∴△AOB≌△COD
故AB=CD,四边形ABCD为平行四边形.
与③(根据一组对边平行且相等)
与④:∵∠BAD=∠DCB
∴AD∥BC
又AB∥DC
根据两组对边分别平行可推出四边形ABCD为平行四边形.
②与⑤:∵AD∥BC
OA=O
∴△AOD≌△COB
故AD=BC,四边形ABCD为平行四边形.
④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形;
(2)③与⑤不能推出四边形ABCD是平行四边形,反例:等腰梯形.故选C.
6. A
分析:▱ABCD中,AC交BD于点O,再添加一个条件,...”;主要考察你对 平行四边形性质等知识点的理解。
解:根据矩形的判定定理(有一个角是直角的平行四边形是矩形)可得
DC⊥BC可证四边形ABCD是矩形.故D不正确.
矩形的对角线相等且相互平分,OA=OB,AC=BD可证四边形ABCD为矩形,故B不正确,C不正确.AB=AD时,可证四边形ABCD为菱形,不能证四边形ABCD为矩形.故A正确.
故选A.
7. C
分析:根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.
解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,
连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,
所以四边形EFGH是平行四边形,
要使四边形EFGH为矩形,
根据矩形的判定(有一个角为直角的平行四边形是矩形)
故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选C.
8. A
分析:因为DE是AC的垂直的平分线,所以D是AC的中点,F是AB的中点,所以DF∥BC,所以∠C=90°,所以四边形BCDE是矩形,因为∠A=30°,∠C=90°,BC=2,能求出AB的长,根据勾股定理求出AC的长,从而求出DC的长,从而求出面积.
解:∵DE是AC的垂直的平分线,F是AB的中点,
∴DF∥BC,
∴∠C=90°,
∴四边形BCDE是矩形.
∵∠A=30°,∠C=90°,BC=2,
∴AB=4,
∴AC==2.
∴BE=CD=.
∴四边形BCDE的面积为:2×=2.
故选A.
二、填空题(本大题共6小题)
9. 分析:根据矩形的性质和判定.
解:如果四边形ABFE为矩形,根据矩形的性质,
那么AF=BE,AC=BC,
又因为AC=AB,
那么三角形ABC是等边三角形,
所以∠ACB=60°.
故答案为60.
10. 分析:利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.
解:添加EB=DC.理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴DE∥BC,
又∵DE=AD,
∴DE=BC,
∴四边形DBCE为平行四边形.
又∵EB=DC,
∴四边形DBCE是矩形.
故答案是:EB=DC.
11.分析:根据全等得出DE=DF,根据BD=DC推出四边形是平行四边形,求出∠BEC=90°,根据矩形的判定推出即可.
解:四边形BFCE是矩形,
证明:∵△BDF≌△CDE,
∴DE=DF,
∵BD=DC,
∴四边形BFCE是平行四边形,
∵BD=CD,DE=BC,
∴BD=DC=DE,
∴∠BEC=90°,
∴平行四边形BFCE是矩形.
12. 分析:根据矩形的判定,有三个是直角的四边形是矩形.
解; 根据矩形的判定,有三个是直角的四边形是矩形,由①②③④刚好能组成一个四个角都是直角的四边形.故填①②③④.
13. 分析:已知AB=2,BC=1,可知AD=BC=1,在Rt△ABD中用勾股定理求BD;设AG=x,由折叠的性质可知,GH=x,BH=BD-DH=BD-AD= ,BG=2-x,在Rt△BGH中,用勾股定理列方程求x即可.
解:在Rt△ABD中,,,∴ ,由折叠的性质可得,△ADG≌△A'DG,∴ ,,∴ .设,则,,在Rt△A'BG中,,解得,即.
14. 分析:连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.
解:连接CM,如图所示:
∵MD⊥AC,ME⊥CB,
∴∠MDC=∠MEC=90°,
∵∠C=90°,
∴四边形CDME是矩形,
∴DE=CM,
∵∠C=90°,BC=3,AC=4,
∴AB===5,
当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,
∴CM的最小值==,
∴线段DE的最小值为;
故答案为:.
三、计算题(本大题共4小题)
15. 分析:根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.
解:证明:∵AB=BC,BD平分∠ABC,
∴BD⊥AC,AD=CD.
∵四边形ABED是平行四边形,
∴BE∥AD,BE=AD,
∴四边形BECD是平行四边形.
∵BD⊥AC,
∴∠BDC=90°,
∴▱BECD是矩形.
16. 分析:(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;
(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.
证明:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四边形ABCD为平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
则四边形BFDE为矩形.
17. 分析:(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;
(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形
解:(1)证明:∵四边形ABCD是平行四边形,
∵AB=CD,AB∥CD.
∵BE=AB,
∴BE=CD.
∵AB∥CD,
∴∠BEF=∠CDF,∠EBF=∠DCF,
在△BEF与△CDF中,
∵,
∴△BEF≌△CDF(ASA);
(2)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠A=∠DCB,
∵AB=BE,
∴CD=EB,
∴四边形BECD是平行四边形,
∴BF=CF,EF=DF,
∵∠BFD=2∠A,
∴∠BFD=2∠DCF,
∴∠DCF=∠FDC,
∴DF=CF,
∴DE=BC,
∴四边形BECD是矩形.
初中湘教版2.5.2矩形的判定综合训练题: 这是一份初中湘教版2.5.2矩形的判定综合训练题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中2.6.1菱形的性质同步测试题: 这是一份初中2.6.1菱形的性质同步测试题,共13页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。
数学八年级下册2.6.2菱形的判定课时作业: 这是一份数学八年级下册2.6.2菱形的判定课时作业,共18页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。