初中22.3 实践与探索优质教学ppt课件
展开2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a>0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a<0时,抛物线开口向 ,有最 点,函数有最 值,是 。
1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .
3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 4. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 5.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。
在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?
问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?
分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为___________件,一周的利润可表示为 元,要想获得6090元利润可列方程 。
(20+x)( 300-10x)
(20+x)( 300-10x) =6090
已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?
若设销售单价x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 .
[300-10(x-60) ]
(x-40)[300-10(x-60)]
(x-40)[300-10(x-60)]=6090
问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10[(x-5)2-25 ]+6000 =-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0≤x≤20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.
答:综合以上两种情况,定价为65元时可获得最大利润为6250元.
由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.若每个橙子市场售价约2元,问增种多少棵橙子树,果园的总产值最高,果园的总产值最高约为多少?
已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?
某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.
(1)写出y与x的函数关系式(标明x的取值范围)
(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
数学九年级上册22.3 实践与探索一等奖教学ppt课件: 这是一份数学九年级上册22.3 实践与探索一等奖教学ppt课件,共15页。PPT课件主要包含了热热身,来到花圃,来到养鸡场,练一练等内容,欢迎下载使用。
华师大版九年级上册22.3 实践与探索精品教学课件ppt: 这是一份华师大版九年级上册22.3 实践与探索精品教学课件ppt,共15页。PPT课件主要包含了s表示离天台的距离,t表示行驶的时间,0≤t≤2,以上关系反之也成立,无实数根,有两个交点,有两个相异的实数根,有一个交点,有两个相等的实数根,没有交点等内容,欢迎下载使用。
数学华师大版22.3 实践与探索公开课教学ppt课件: 这是一份数学华师大版22.3 实践与探索公开课教学ppt课件,共10页。PPT课件主要包含了∵AB4,∵OC44,∴C044,一般步骤,课后练习等内容,欢迎下载使用。