- 新教材2023高中数学第四章数列4.1数列的概念第1课时数列的概念与简单表示方法分层演练新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023高中数学第四章数列4.1数列的概念第2课时数列的递推公式与前n项和分层演练新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023高中数学第四章数列4.2等差数列4.2.1等差数列的概念第2课时等差数列的性质及其应用分层演练新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023高中数学第四章数列4.2等差数列4.2.2等差数列的前n项和公式第1课时等差数列的前n项和公式分层演练新人教A版选择性必修第二册 试卷 0 次下载
- 新教材2023高中数学第四章数列4.2等差数列4.2.2等差数列的前n项和公式第2课时等差数列的前n项和的性质及其应用分层演练新人教A版选择性必修第二册 试卷 0 次下载
人教A版 (2019)选择性必修 第二册4.2 等差数列第1课时达标测试
展开4.2 等差数列 4.2.1 等差数列的概念 第1课时 等差数列的概念
A级 基础巩固
1.已知在数列{an}中,a3=2,a7=1,若为等差数列,则a19= ( )
A.0 B. C. D.2
解析:因为a3=2,a7=1,所以=,=,
所以=+×(19-3)=+=1,所以a19=0.
答案:A
2.若一个等差数列的前4项分别是a,x,b,2x,则= ( )
A. B. C. D.
解析:因为a,x,b,2x成等差数列,所以x为a与b的等差中项,b为x与2x的等差中项,
所以所以所以=.
答案:C
3.已知数列{an}是等差数列,若a7-2a4=6,a3=2,则公差d= ( )
A.2 B.4 C.8 D.16
答案:B
4.多空题若数列{an}满足a1=3,an+1=an+3(n∈N*),则a3=9, 通项公式an=3n.
5.在等差数列{an}中,若a3=7,a5=a2+6,则a6=13.
解析:设等差数列{an}的公差为d,则a5-a2=3d=6.
因为a3=7,所以a6=a3+3d=7+6=13.
6.若首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是.
解析:设an=-24+(n-1)d,
由题意,可得解得
(1)a1=8,a9=-2,求d与a14.
(2)a3+a5=18,a4+a8=24,求d.
解:(1)因为a1=8,a9=a1+8d=-2,
所以d=-,
所以a14=a1+13d=8+13×=-.
(2)因为(a4+a8)-(a3+a5)=4d=6,所以d=.
B级 拓展提高
8.多选题设d是各项都为正数的等差数列{an}的公差,若d>0,a3=2,则 ( )
A.a2·a4<4
B.+a4≥
C.+>1
D.a1·a5>a2·a4
解析:由题知,所以0
+a4=(2-d)2+(2+d)=d2-3d+6≥,B正确;
+=+=>1,C正确;
a1·a5-a2·a4=(2-2d)·(2+2d)-(2-d)·(2+d)=-3d2<0,所以a1·a5
9.设数列{an},{}(n∈N*)都是等差数列,若 a1=2,则+++= ( )
A.60 B.62C.63 D.66
解析:由题意可知,数列{an},{}都是等差数列,且2=+,a1=2.
设数列{an}的公差为d,则2×(2+d)2=22+(2+2d)2,解得d=0,所以an=2,所以+++=4+8+16+32=60.
答案:A
10.有两个等差数列2,6,10,…,190和2,8,14,…,200,若由这两个等差数列的公共项按从小到大的顺序排列组成一个新数列,则这个新数列的项数为( )
A.15 B.16C.17 D.18
解析:因为等差数列2,6,10,…,190的公差为4,等差数列2,8,14,…,200的公差为6,
所以由这两个数列的公共项按从小到大的顺序排列组成的新数列的公差为12,首项为2,所以通项公式为an=12n-10.
由题意,可得12n-10≤190,解得n≤.
因为n∈N*,所以n的最大值为16,
即新数列的项数为16.
答案:B
11.下表记录了一次实验中某种昆虫爬行的时间和距离:
时间t/s
1
2
3
…
?
…
60
距离s/cm
9.8
19.6
29.4
…
49
…
?
(1)你能建立一个等差数列的模型,表示这种昆虫的爬行距离s和时间t之间的关系吗?
(2)利用建立的模型计算这种昆虫1 min能爬多远?爬行49 cm需要多长时间?
解:(1)由题目表中数据可知,该数列(爬行距离)从第2项起,每一项与前一项的差都是常数9.8,所以这是一个等差数列模型.因为a1=9.8,d=9.8,所以这种昆虫的爬行距离s与时间t的关系是s=9.8t.
(2)当t=1 min=60 s时,s=9.8 t=9.8×60=588(cm).
当s=49 cm时,t===5(s).
12.已知数列{an}满足=an+1(n∈N*),且a1=1.
(1)证明数列为等差数列;
(2)求数列{an}的通项公式;
(3)若记bn为满足不等式
所以-=-=+-=,即-=为常数.
又因为=1,
所以数列是以1为首项,为公差的等差数列.
(2)解:由(1)可得=1+(n-1)×=,
所以an=.
(3)解:由
所以Tn=1--=1--.
当n为奇数时,Tn=1+-,Tn递减,0
综上,数列{Tn}的最大项为T1=,最小项为T2=-.
C级 挑战创新
13.多选题若等差数列{an}和{bn}的公差均为d(d≠0),则下列数列中为等差数列的是 ( )
A.{λan}(λ为常数) B.{an+bn}
C.{-} D.{anbn}
解析:因为数列{an}和{bn}是公差均为d(d≠0)的等差数列,
所以可得an=a1+(n-1)d,bn=b1+(n-1)d,所以an-bn=a1-b1.
对于A选项,λan+1-λan=λ(an+1-an)=λd,所以数列{λan}(λ为常数)是等差数列;
对于B选项,(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=2d,所以数列{an+bn}是等差数列;
对于C选项,(-)-(-)=(-)-(-)=(an+1-an)(an+1+an)-(bn+1-bn)·(bn+1+bn)=d(an+1-bn+1+an-bn)=2d(a1-b1),所以数列{-}是等差数列;
对于D选项,an+1bn+1-anbn=(an+d)(bn+d)-anbn=d2+d(an+bn),不是常数,所以数列{anbn}不是等差数列.
答案:ABC
高中数学4.2 等差数列第1课时当堂检测题: 这是一份高中数学4.2 等差数列第1课时当堂检测题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第二册4.2 等差数列第一课时同步达标检测题: 这是一份人教A版 (2019)选择性必修 第二册4.2 等差数列第一课时同步达标检测题,共6页。试卷主要包含了 在数列中,,,则等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第二册4.2 等差数列第2课时课后练习题: 这是一份高中数学人教A版 (2019)选择性必修 第二册4.2 等差数列第2课时课后练习题,共7页。