所属成套资源:2023年新八年级数学暑假精品课(苏科版)
重难点02全等三角形中“倍长中线”模型-2023年新八年级数学暑假精品课(苏科版)
展开
这是一份重难点02全等三角形中“倍长中线”模型-2023年新八年级数学暑假精品课(苏科版),文件包含重难点02全等三角形中“倍长中线”模型解析版docx、重难点02全等三角形中“倍长中线”模型原卷版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。
重难点02全等三角形中“倍长中线”模型
1.识别几何模型。
2.利用“倍长中线”模型解决问题
倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。常用于构造全等三角形。中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明)(注:一般都是原题已经有中线时用)。
三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.
图一
图二
图三
例1、如图,在△ABC中,AD平分∠BAC,且BD=CD.求证:AB=AC.
方法1:如图,延长AD到E,使DE=AD,连接BE
在△BDE和△CDA中
∴△BDE≌△CDA(SAS)
∴AC=BE,∠E=∠2
∵AD平分∠BAC
∴∠1=∠2[来源:Z。xx。k.Com]
∴∠1=∠E
∴AB=BE
∴AB=AC
方法2:
如图,过点B作BE∥AC,交AD的延长线于点E
∵BE∥AC
∴∠E=∠2
在△BDE和△CDA中
∴△BDE≌△CDA(AAS)
∴BE=AC
∵AD平分∠BAC
∴∠1=∠2
∴∠1=∠E
∴AB=BE
∴AB=AC
【变式1】如图1,已知中,是边上的中线.
求证:.
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴∴
在中,
∴.
【变式2】如图,在△ABC中,AD为BC边上的中线.
(1)按要求作图:延长AD到点E,使DE=AD;连接BE.
(2)求证:△ACD≌△EBD.
(3)求证:AB+AC >2AD.
(4)若AB=5,AC=3,求AD的取值范围.
解:(1)如图,
(2)证明:如图,
∵AD为BC边上的中线
∴BD=CD
在△BDE和△CDA中
∴△BDE≌△CDA(SAS)
(3)证明:如图,
∵△BDE≌△CDA
∴BE=AC
∵DE=AD
∴AE=2 AD
在△ABE中,AB+BE>AE
∴AB+AC>2AD
(4)在△ABE中,
AB-BE
相关试卷
这是一份中考数学 专题02 倍长中线模型构造全等三角形(专题练习),文件包含中考数学专题02倍长中线模型构造全等三角形教师版专题练习docx、中考数学专题02倍长中线模型构造全等三角形学生版专题练习docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份专题02 倍长中线模型构造全等三角形-中考数学重难点专项突破(全国通用),共7页。
这是一份专题02 倍长中线模型构造全等三角形(提升训练)-中考数学重难点专项突破(全国通用),文件包含专题02倍长中线模型构造全等三角形提升训练原卷版docx、专题02倍长中线模型构造全等三角形提升训练解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。