![人教版八年级数学下册 平行四边形的判定 课时作业(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14662235/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学下册 平行四边形的判定 课时作业(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14662235/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学下册 平行四边形的判定 课时作业(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/14662235/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版八年级下册18.1.2 平行四边形的判定课后作业题
展开
这是一份人教版八年级下册18.1.2 平行四边形的判定课后作业题,共7页。试卷主要包含了5,那么四边形EFCD的周长为,5BC=6,5+13)=39cm等内容,欢迎下载使用。
人教版八年级数学下册 平行四边形的判定
课时作业
一 、选择题
如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是( )
A.AD=BC B.OA=OC C.AB=CD D.∠ABC+∠BCD=180°
分别过一个三角形的3个顶点作对边的平行线,这些平行线两两相交,则构成的平行四边形的个数是( )
A.1个 B.2个 C.3个 D.4个
能判定四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等; B.一组对边相等,一组邻角相等;
C.一组对边平行,一组邻角相等; D.一组对边平行,一组对角相等。
下列条件中,不能判定四边形是平行四边形的是( )
A.两组对边分别平行 B.一组对边平行,另一组对边相等
C.两组对边分别相等 D.一组对边平行且相等
下列条件不能判断四边形是平行四边形的是( )
A.两组对边分别相等
B.一组对边平行且相等
C.一组对边平行,另一组对边相等
D.对角线互相平分
如图:四边形ABCD中,AD∥BC,下列条件中,不能判定ABCD为平行四边形的是( )
A.AD=BC B.∠B+∠C=180° C.∠A=∠C D.AB=CD
下面条件中,能判定四边形是平行四边形的条件是( )
A.一组对角相等 B.对角线互相平分 C.一组对边相等 D.对角线互相垂直
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是( )
A.6cm B.9cm C.3cm D.12cm
下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )
A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC
如图,在△ABC中,D,E分别是AB、BC的中点,点F在DE延长线上.添加一个条件使四边形ADFC为平行四边形,则这个条件是( )
A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于( )
A.1 B.2 C.3 D.4
如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为( )
A.16 B.14 C.12 D.10
二 、填空题
如图,加一个条件 与∠A+∠B=180°能使四边形ABCD成为平行四边形.
如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.
如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则□ABCD周长是 .
.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______
如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD是平行四边形.
一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_______
三 、解答题
如图,已知在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.
如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.
如图,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.
△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.
如图,已知△ABC,分别以它的三边为边长,在BC边的同侧作三个等边三角形,即△ABD,△BCE,△ACF,求证:四边形ADEF是平行四边形。
参考答案
C
C
D
B
C.
D.
B
A
A
答案为:B;
C
C
答案为AD=BC或AB∥CD.
答案为:3;
12
51
答案为:AD∥BC(答案不唯一)
答案为:平行四边形
证明:∵AB∥CD,∴∠DCA=∠BAC,
∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,
在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,
∵AB∥CD,∴四边形ABCD为平行四边形.
证明:∵BE⊥AD,BE⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,
在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.
∵BE⊥AD,BE⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.
略
解:在平行四边形ABCD中,
∵AB∥CD,∴∠ABC+∠BCD=180°,
∵∠ABE=∠EBC,∠BCE=∠ECD.,
∴∠EBC+∠BCE=90°,
∴∠BEC=90°,
∴BC2=BE2+CE2=122+52=132
∴BC=13cm,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AB=AE,
同理CD=ED,∵AB=CD,
∴AB=AE=CD=ED=0.5BC=6.5cm,
∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm
连结BE,CE //且=AB□ABECBF=FC.□ABCDAO=OC,∴AB=2OF.
证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,
∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,
∴四边形MNEF是平行四边形.
证明解:∵△ABD,△BEC都是等边三角形,
∴BD=AB,BE=BC,∠DBA=∠EBC=60°,
∴∠DBE=60°-∠EBA,∠ABC=60°-∠EBA,
∴∠DBE=∠ABC,
在△DBE和△ABC中,
BD=AB ;∠DBE=∠ABC;BE=BC
∴△DBE≌△ABC(SAS),
∴DE=AC,
又∵△ACF是等边三角形,
∴AC=AF,
∴DE=AF。
同理可得:△ABC≌△FEC,
∴EF=AB=DA。
∵DE=AF,DA=EF,
∴四边形ADEF为平行四边形。
相关试卷
这是一份初中数学北师大版八年级下册2 平行四边形的判定第3课时巩固练习,共16页。试卷主要包含了平行四边形的对角线互相平分,平行四边形的对边平行且相等,对角线相等的四边形是平行四边形等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册2 平行四边形的判定第2课时测试题,共10页。试卷主要包含了下列命题是假命题的是等内容,欢迎下载使用。
这是一份北师大版八年级下册2 平行四边形的判定第2课时课时训练,共12页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)