人教版八年级上册12.3 角的平分线的性质第2课时教案设计
展开
这是一份人教版八年级上册12.3 角的平分线的性质第2课时教案设计,共5页。教案主要包含了教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。
12.3 第2课时 角平分线的判定
一、教学目标
1.知识与技能
1.了解角的平分线的判定定理;
2.会利用角的平分线的判定进行证明与计算.
2.过程与方法
在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.
3.情感、态度与价值观
在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.
二、教学重难点
重点:角的平分线的判定定理的证明及应用;
难点:角的平分线的判定.
三、教学过程
(一) 复习、回顾
1. 角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;
②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;
③过点P作射线OP,射线OP即为所求.
2. 角平分线的性质:角的平分线上的点到角的两边的距离相等.
①推导
已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,
垂足分别为点A、点B.
求证:PA=PB.
证明:∵PA⊥OM,PB⊥ON
∴∠PAO=∠PBO=90°
∵OC平分∠MON
∴∠1=∠2
在△PAO和△PBO中,
∴△PAO≌△PBO
∴PA=PB
②几何表达:(角的平分线上的点到角的两边的距离相等)
如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,
∴PA=PB.
(二)合作探究
角平分线的判定:到角的两边的距离相等的点在角的平分线上.
①推导
已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.
求证:点P在∠MON的平分线上.
证明:连结OP
在Rt△PAO和Rt△PBO中,
∴Rt△PAO≌Rt△PBO(HL)
∴∠1=∠2
∴OP平分∠MON
即点P在∠MON的平分线上.
②几何表达:(到角的两边的距离相等的点在角的平分线上.)
如图所示,∵PA⊥OM,PB⊥ON,PA=PB
∴∠1=∠2(OP平分∠MON)
【典型例题】
例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.
求证:(1)∠ABC=∠ABC′;
(2)BC=BC′(要求:不用三角形全等判定).
分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是
∠CBC′平分线上的点,由此可打开思路.
证明:(1)∵∠C=∠C′=90°(已知),
∴AC⊥BC,AC′⊥BC′(垂直的定义).
又∵AC=AC′(已知),
∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).
∴∠ABC=∠ABC′.
(2)∵∠C=∠C′,∠ABC=∠ABC′,
∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)
即∠BAC=∠BAC′,
∵AC⊥BC,AC′⊥BC′,
∴BC=BC′(角平分线上的点到这个角两边的距离相等).
例2. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?
分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.
解:AP平分∠BAC.
结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.
理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.
∵BM是∠ABC的角平分线且点P在BM上,
∴PD=PE(角平分线上的点到角的两边的距离相等).
同理PF=PE,∴PD=PF.
∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).
(三)巩固训练
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.
解析:先判定Rt△BDE和Rt△CDF全等,得出DE=DF,再由角平分线的判定可知AD是∠BAC的平分线.
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形.在Rt△BDE和Rt△CDF中,∵
∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线.
方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.
(四)小结
请你说说本课的收获与困惑.
(五)作业
四、板书设计
1.角平分线的判定定理.
2.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等.
五、教学反思
本节课借助于直观的模型引导学生进行观察、猜想和验证,从而引导学生在自主探究的基础上,通过与他人的合作交流探究出角平分线的性质定理和逆定理,这样有效地提高了课堂的教学效果,促进了学生对新知识的理解和掌握.不足之处是少数学生在应用角平分线的性质定理和逆定理解题时,容易忽视“角平分线上的点到角两边的距离相等”这一条件,需要在今后的教学和作业中加强巩固和训练.
相关教案
这是一份数学八年级上册12.3 角的平分线的性质第2课时教案及反思,共6页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质第1课时教学设计,共6页。教案主要包含了教学目标,教学重点,教法学法,教与学互动设计,板书设计,教学反思等内容,欢迎下载使用。
这是一份人教版12.3 角的平分线的性质第2课时教学设计,共7页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。