所属成套资源:浙教版七年级上册数学教案
初中数学浙教版七年级上册5.4 一元一次方程的应用教案设计
展开
这是一份初中数学浙教版七年级上册5.4 一元一次方程的应用教案设计,共6页。教案主要包含了创设情景,引出课题,巩固训练等内容,欢迎下载使用。
5.4一元一次方程的应用(2) 教案
课题
5.4一元一次方程的应用(2)
单元
第五单元
学科
数学
年级
七年级(上)
学习
目标
1.能用一元一次方程解决图形的面积、体积变形、盈亏等问题.
2.学习分析几何问题的方法,提高学生的分析能力及数形结合能力.
重点
寻找两个面积体积之间的相等关系.
难点
寻找两个面积体积之间的相等关系.
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
一、创设情景,引出课题
思考
自议
体会建立一元一次方程的模型思想;
注意理解图形的面积、体积变形、盈亏等问题的等 量关系.
讲授新课
二、 提炼概念
1、在解决图形问题时,要抓住用不同方法表示出来的图形面积相等这一关系列出方程即可.
2、在解决等积变形问题时,首先要找到在变化过程中不变量,善于利用图形的面积、体积、周长及质量等捕捉等量关系,从而列出方程.
三、 典例精讲
例3 一标志性建筑的底面呈正方形,在其四周铺上花岗石,形成一个边宽为3.2米的正方形框(如图中阴影部分).已知铺这个框恰好用了144块边长为0.8米的正方形花岗石(接缝忽略不计),问标志性建筑的底面边长是多少米?
分析 阴影部分的面积= 144块边长为0.8米的正方形花岗石的面积.
阴影部分可以分割成4个长为(x+3.2)米,宽为3.2米的长方形.
如图,若用x表示中间空白正方形的边长,怎样用含x的代数式表示阴影部分的面积呢?你能设计几种不同的计算方法?
1、在应用方程解决实际问题时,清楚地分辨各量之间的关系,尤其相等关系是建立方程的关键;
2、解题中的检验对确保答案的正确和合理很有帮助,解题时应养成良好的检验习惯,但具体过程可省略不写;
3、对于等积变形问题,它的基本数量关系是相关的面积公式,相等关系的特征是存在不变量,也就是用不同的方法来计算阴影部分的面积,面积不变.
你能测量出一个苹果的体积是多少吗?你怎么测量呢?
在测量过程中你发现了什么?
苹果的体积等于测量时上升部分的水的体积.
请指出下列过程中,哪些量发生了变化,哪些量保持不变?
1、把一小杯水倒入另一只大杯中;
2、用一根15 cm长的铁丝围成一个三角形,然后把它围成长方形;
3、用一块橡皮泥先做成一个立方体,再把它改变成球.
例4 如图,用直径为200 mm的钢柱锻造一块长、宽、高分别为300 mm,300 mm和80 mm的长方体毛坯底板.问应截取钢柱多长(不计损耗,结果 误差不超过1 mm)?
分析:1、在这个问题中的相等关系是:
锻造前的( )=锻造后的( );
2、如果设锻造前圆柱的高为x毫米,也既截取的圆柱长为x毫米,则圆柱的体积怎么表示 ?
3、锻造后长方体的长为( )毫米,宽为( )毫米,高为( )毫米,体积怎么计算?
4、如何列方程?
会用一元一次方程解决图形的面积问题.
解应用题时不能盲目地算出结果,应当考虑到实际情况,不符合实际的应舍去.
课堂检测
四、巩固训练
1、一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程:
①4×3(2x+3)=0.5×0.5×504;
②2×3(2x+6)+2×3x=0.5×0.5×504;
③(x+6)(2x+6)-2x•x=0.5×0.5×504,
其中正确的是( )
A.② B.③ C.②③ D.①②③
1. C
2.西湖区某中学为了营造良好的文化氛围,学校决定在学校的一段文化墙上制作一幅永久性的标语,为此,在文化墙上特别做了一个长1640cm的长方形横标框,铺红色衬底.为了使制作时方便、制作出来的标语美观,对有关数据作了如下规定:边空:字宽:字距=6∶9∶2,如图所示.
根据这个规定,若这幅标语名称的字数为14,则边空、字宽、字距各是多少?
解:设边空、字宽、字距分别为6x(cm)、9x(cm)、2x(cm),
则6x×2+9x×14+2x×(14-1)=1640,
解得x=10,∴6x=60,9x=90,2x=20,
答:边空为60cm,字宽为90cm,字距为20cm.
3.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?(圆柱的体积=底面积×高)
解:设容器内的水将升高xcm,
据题意得:π·102×12+π·22(12+x)=π·102(12+x),
1200+4(12+x)=100(12+x),
1200+48+4x=1200+100x,
96x=48,
x=0.5.
故容器内的水将升高0.5cm.
4.一个长方形的养鸡场的一条长边靠墙,墙长14米,其他三边需要用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成上述养鸡场,其中长比宽多5米;小赵也打算用它围成上述养鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计养鸡场的面积是多少?
课堂小结
相关教案
这是一份浙教版七年级上册5.4 一元一次方程的应用教案设计,共4页。教案主要包含了创设情景,引出课题,,巩固训练等内容,欢迎下载使用。
这是一份数学七年级上册5.4 一元一次方程的应用教学设计及反思,共6页。教案主要包含了创设情景,引出课题,巩固训练等内容,欢迎下载使用。
这是一份初中数学浙教版七年级上册5.4 一元一次方程的应用教案,共5页。教案主要包含了创设情景,引出课题,巩固训练等内容,欢迎下载使用。