2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第1节两个计数原理排列与组合课件
展开考试要求:理解排列、组合的概念、排列数公式及组合数公式,并能利用公式解决一些简单的实际问题.
必备知识·回顾教材重“四基”
一、教材概念·结论·性质重现1.两个计数原理
两个计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
3.排列数、组合数的定义、公式、性质
2.教学楼共有6层楼,每层都有南、北两个楼梯,从一楼到六楼的走法共有( )A.25种 B.52种 C.62种 D.26种A 解析:根据题意,教学楼共有6层,共5层楼梯,每层均有两个楼梯,即每层有2种走法,则一共有2×2×2×2×2=25种走法.故选A.
3.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取礼物都满意,则选法有( )A.30种 B.50种 C.60种 D.90种B 解析:①甲同学选择牛,乙有2种,丙有10种,选法有1×2×10=20种,②甲同学选择马,乙有3种,丙有10种,选法有1×3×10=30种,所以总共有20+30=50种.故选B.
关键能力·研析考点强“四翼”
考点1 两个计数原理——应用性
考点2 排列与组合——综合性
考点3 分组分配问题——综合性
1.下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A.14条 B.12条 C.9条 D.7条
B 解析:由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计数原理可得从①→⑧共有3×2×2=12条路径.故选B.
2.用数字3,6,9组成四位数,各数位上的数字允许重复,且数字3至多出现一次,则可以组成的四位数的个数为( )A.81 B.48 C.36 D.24
B 解析:根据题意,数字3至多出现一次,分2种情况讨论:①数字3不出现,此时四位数的每个数位都可以为6或9,都有2种情况,则此时四位数有2×2×2×2=16个;②数字3出现1次,则数字3出现的情况有4种,剩下的三个数位,可以为6或9,都有2种情况,此时四位数有4×2×2×2=32个,故有16+32=48个四位数.故选B.
3.(2022·威海模拟)已知一个不透明的袋子中放有编号分别为1,2,3,4,5,6,7的7个大小、形状相同的小球.小明从袋子中有放回地取3次球,每次只取一个球,且3次取出的球的编号相乘的结果为偶数、相加的结果为奇数,则不同的取球方法种数为( )A.712 B.216 C.108 D.72
C 解析:根据3次取出的球的编号相乘的结果为偶数、相加的结果为奇数可知,有一次取出的球的编号为奇数,2次取出的球的编号为偶数,先确定哪一次得到奇数号球,然后从4个奇数号球中取一个,再每次都从3个偶数号球中任取一个(有放回取球),故满足题意的取球方法有3×4×3×3=108(种).
4.现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是( )A.120 B.140 C.240 D.260
D 解析:先涂A处共有5种涂法,再涂B处有4种涂法,最后涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,则C处有3种涂法,D处有3种涂法,由此可得不同的涂法方法有5×4×(1×4+3×3)=260(种),故选D.
两个计数原理的应用(1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成.(2)较复杂的问题可借助图表来完成.(3)对于涂色问题:①分清元素的数目以及在不相邻的区域内是否可以使用同类元素.②注意对每个区域逐一进行,分步处理.
例1 (1)(2022·新高考Ⅱ卷)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )A.12种 B.24种 C.36种 D.48种
B 解析:因为丙、丁要在一起,先把丙、丁捆绑,看做一个元素,连同乙、戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙、丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24(种)不同的排列方式.故选B.
(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A.232 B.252 C.472 D.484
1.有限制条件的排列问题的常用方法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
2.组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含有”,则先将这些元素取出,再由另外元素补足;“不含有”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,可逆向思维,间接求解.
考向1 整体均分问题例2 教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有______种不同的分派方法.
解决分组问题的关键是如何删去重复排列的组数.一般地,若为平均分组,则应用n个元素分组得到的排列种数除以组数的全排列;若为不平均分组,则应按照实际情况分析重复排列的种数,然后再进行相应计算.
考向2 部分均分问题例3 将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答)
考向3 不等分问题例4 (1)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为( )A.35 B.70 C.165 D.1 860
高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第2讲排列与组合(含解析): 这是一份高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第2讲排列与组合(含解析),共52页。PPT课件主要包含了排列与组合的概念,排列数与组合数,名师点睛,题组一,走出误区,答案1×,2×3×,题组二,走进教材,A60种等内容,欢迎下载使用。
高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第1讲分类加法计数原理与分步乘法计数原理(含解析): 这是一份高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第1讲分类加法计数原理与分步乘法计数原理(含解析),共37页。PPT课件主要包含了题组一,走出误区,以相同,接完成这件事,答案1×,2√3√,题组二,走进教材,答案24,题组三等内容,欢迎下载使用。
新教材适用2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第2讲排列与组合课件: 这是一份新教材适用2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第2讲排列与组合课件,共60页。PPT课件主要包含了第二讲排列与组合,知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,所有不同排列,作为一组,所有不同组合,ABC等内容,欢迎下载使用。