终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第27讲 圆锥曲线中定直线问题-【同步题型讲义】2023-2024学年高二数学同步教学题型讲义(人教A版2019选择性必修第一册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第27讲 圆锥曲线中定直线问题(原卷版).docx
    • 解析
      第27讲 圆锥曲线中定直线问题(解析版).docx
    第27讲  圆锥曲线中定直线问题(原卷版)第1页
    第27讲  圆锥曲线中定直线问题(原卷版)第2页
    第27讲  圆锥曲线中定直线问题(原卷版)第3页
    第27讲  圆锥曲线中定直线问题(解析版)第1页
    第27讲  圆锥曲线中定直线问题(解析版)第2页
    第27讲  圆锥曲线中定直线问题(解析版)第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第27讲 圆锥曲线中定直线问题-【同步题型讲义】2023-2024学年高二数学同步教学题型讲义(人教A版2019选择性必修第一册)

    展开

    这是一份第27讲 圆锥曲线中定直线问题-【同步题型讲义】2023-2024学年高二数学同步教学题型讲义(人教A版2019选择性必修第一册),文件包含第27讲圆锥曲线中定直线问题解析版docx、第27讲圆锥曲线中定直线问题原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
    第27讲 圆锥曲线中定直线问题
    【典型例题】
    【例1】(2022·重庆八中高三开学考试)已知为的两个顶点,为的重心,边上的两条中线长度之和为6.
    (1)求点的轨迹的方程.
    (2)已知点,直线与曲线的另一个公共点为,直线与交于点,试问:当点变化时,点是否恒在一条定直线上?若是,请证明;若不是,请说明理由.
    【答案】(1)(2)是,证明见解析
    【分析】(1)依题意,根据椭圆的定义可知的轨迹是以、为焦点的椭圆(不包括长轴的端点),从而求出椭圆方程;
    (2)设直线的方程为:,,,联立直线与椭圆方程,消元、列出韦达定理,即可得到,再求出直线、的方程,联立求出交点的横坐标,整理可得求出定直线方程.
    (1)
    解:因为为的重心,且边上的两条中线长度之和为6,
    所以,
    故由椭圆的定义可知的轨迹是以为焦点的椭圆(不包括长轴的端点),
    且,所以,
    所以的轨迹的方程为;
    (2)
    解:设直线的方程为:,,,
    联立方程得:,
    则,,
    所以,
    又直线的方程为:,
    又直线的方程为:,
    联立方程,解得,
    把代入上式得:,
    所以当点运动时,点恒在定直线上
    【例2】(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知椭圆C:的上下顶点分别为,过点P且斜率为k(kb>0)的离心率为,短轴的下端点A的坐标为(0,-1).
    (1)求椭圆E的方程;
    (2)设B,C是椭圆E上异于A的两点,且|AB|=|AC|,BC 的中点为G ,求证:点G在定直线上运动.
    【答案】(1)
    (2)证明见解析
    【分析】(1)依题意可得,再根据离心率及,即可求出,从而得解;
    (2)设直线BC的方程为,,,联立直线与椭圆方程,消元列出韦达定理,设的中点,即可得到,且 ,当时,轴,当时,由AG⊥BC ,得,即可得到,从而得到,即可得解;
    (1)
    解:由椭圆E短轴的下端点A的坐标为,得,即;
    由,得,
    代入上式,解得,从而,
    所以椭圆E的方程为.
    (2)
    解:若 轴,不符合题意;
    若 与 轴不垂直,设直线BC的方程为,代入并整理,得

    一方面,必须;
    另一方面,设,,则,
    设的中点 ,则 ,
    且 ,
    ①当时,轴,显然点G在y轴上.
    ②当时,由AG⊥BC ,得,
    则即 ,化简得,
    代入,得,解得.
    所以 ,,即,
    故点()在定直线上运动.
    综上,当轴时,显然点G在y轴上运动;当BC与不平行不垂直时,点G在直线上运动.
    9.(2022·广东·金山中学高三阶段练习)已知椭圆:的离心率为,左、右顶点分别为,,上、下顶点分别为,,四边形的面积为.
    (1)求椭圆的方程;
    (2)过点且斜率存在的直线与椭圆相交于,两点,证明:直线,的交点在一定直线上,并求出该直线方程.
    【答案】(1)
    (2)证明见解析;直线
    【分析】(1)根据题意可得,进而解出,,即可得出椭圆方程;
    (2)设直线的方程为:,设,,联立椭圆方程消去得到关于的一元二次方程,根据韦达定理表示出;利用直线的点斜式方程求出直线、的方程,两直线方程联立方程组并消去,整理化简即可得出结果.
    (1)
    由题得:,,,
    解得:,,
    故椭圆的方程为.
    (2)
    设直线的方程为:,设,,
    联立,得,,
    由韦达定理得,,∴.
    因为,,
    所以直线的方程为,直线的方程为,
    联立消去,得,
    整理得

    所以直线,的交点一定在直线上.
    10.(2021·安徽宿州·三模(文))已知点,,动点满足,点的轨迹为曲线.
    (1)求曲线的方程;
    (2)已知圆上任意一点处的切线方程为:,类比可知椭圆:上任意一点处的切线方程为:.记为曲线在任意一点处的切线,过点作的垂线,设与交于,试问动点是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.
    【答案】(1);(2)动点在定直线上.
    【分析】(1)根据椭圆的定义得到点的轨迹为以 ,为焦点,长轴长为4的椭圆,进而求得的值,即可求得椭圆的方程;
    (2)设,得到直线的方程,进而得到,联立方程组,求得动点在定直线上;当时,求得,即可得到动点在定直线上.
    【详解】(1)由题意,点,,动点满足,
    根据椭圆的定义知点的轨迹为以 ,为焦点,长轴长为4的椭圆
    设椭圆方程为:,则,所以,
    曲线的方程为:.
    (2)设,可得直线的方程为:
    当时,,
    所以的斜率为,可得,
    由与的方程联立,消得,
    可得,解得,
    所以动点在定直线上,
    当时,可得,此时,,
    联立方程组,可得,此时在直线上,
    综上所述,动点在定直线上.
    【点睛】解答圆锥曲线的定点、定直线问题的策略:
    1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量);②利用条件找到过定点的曲线之间的关系,得到关于与的等式,再研究变化量与参数何时没有关系,得出定点的坐标;
    2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.
    11.(2021·全国·高二专题练习)已知椭圆的一个焦点与抛物线的焦点重合,两条曲线在第一象限内的交点满足.
    (1)求椭圆以及抛物线的标准方程;
    (2)设动直线与椭圆有且只有一个公共点,过椭圆的左焦点作的垂线与直线交于点,求证:点在定直线上,并求出定直线的方程.
    【答案】(1);;(2)证明见解析,.
    【分析】(1)根据椭圆的一个焦点与抛物线焦点重合,可得,的关系,又根据联立椭圆与抛物线可得第一象限交点的横坐标,进而可得关于的方程,解方程求的值,进而可得椭圆和抛物线的方程;
    (2)联立直线方程和椭圆方程,消去得到,由直线与椭圆相切可得其判别式等于0,整理得,代入求得的坐标,然后写出直线的方程为,联立方程组,求得,则说明点在定直线上.
    【详解】(1)∵椭圆的一个焦点与抛物线的焦点重合,
    ∴,解得,∴椭圆方程为,
    ,解得,,
    ∵点在第一象限,∴点的横坐标为,
    又∵,∴,解得.
    ∴椭圆,抛物线;
    (2)由①,
    由直线与椭圆相切可得且,
    整理得,
    将代入①式得,
    即,解得,∴,
    又,∴,则,
    ∴直线的方程为,
    联立得.
    ∴点在定直线上.
    【点睛】解决直线与椭圆的综合问题时,要注意:
    (1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
    (2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
    .

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map