![2020年人教版八年级数学下册期末章节知识点汇总(含学生版word版)第1页](http://img-preview.51jiaoxi.com/2/3/14673308/0-1691732052689/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年人教版八年级数学下册期末章节知识点汇总(含学生版word版)第2页](http://img-preview.51jiaoxi.com/2/3/14673308/0-1691732052727/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年人教版八年级数学下册期末章节知识点汇总(含学生版word版)第3页](http://img-preview.51jiaoxi.com/2/3/14673308/0-1691732052752/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年人教版八年级数学下册期末章节知识点汇总(含学生版word版)
展开
这是一份2020年人教版八年级数学下册期末章节知识点汇总(含学生版word版),共12页。试卷主要包含了三象限;k<0,图象经过第二等内容,欢迎下载使用。
2020年人教版八年级数学下册期末章节知识点汇总
二次根式知识点
二次根式:
最简二次根式:必须同时满足下列条件:
⑴被开方数中 ;
⑵被开方数中 ;
⑶分母中 。
同类二次根式:
二次根式化成最简二次根式后,若 ,则这几个二次根式就是同类二次根式。
二次根式的性质:
二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号 ;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号 .
(2)二次根式的加减法:先把二次根式化成 再合并 .
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为 .
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
比较数值
(1)平方法
(2)分母有理化法
(3)倒数法
勾股定理 知识点归纳
勾股定理: ;
表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么 .
勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:
①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.
常见方法如下:
勾股定理的适用范围
勾股定理揭示了直角三角形 之间所存在的数量关系,它只适用于 ,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是 三角形
勾股定理的应用
①已知直角三角形的任意两边长,可求第三边.
在△ABC中,∠C=90°,则c= ,b= ,a= .
②知道直角三角形一边,可得另外两边之间的 关系.
③可运用勾股定理解决一些实际问题.
勾股定理的逆定理
如果三角形三边长a,b,c满足 ,那么这个三角形是 三角形,其中 为
斜边.
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2+b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
若a2+b2c2,时,以a,b,c为三边的三角形是 三角形;
②定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+c2=b2,那么以a,b,c三边的三角形是直角三角形,但是 为斜边.
③勾股定理的逆定理在描述时,不能说成:当“斜边”的平方等于两条“直角边”的平方和时,这个三角形是直角三角形.
勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,a,b,c为正整数时,称a,b,c为一组勾股数.
②记住常见勾股数可以提高解题速度,
如 ; ; ; ; ; 等
勾股定理的应用
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造 三角形,以便正确使用勾股定理进行求解.
勾股定理逆定理的应用
勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.
勾股定理及其逆定理的应用
勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.
平行四边形 知识点复习总结
平行四边形
定义:有两组对边 的四边形是平行四边形。表示:平行四边形用符号“□ ”来表示。
平行四边形性质:
平行四边形对边 ;
平行四边形对角 ;
平行四边形对角线 。
平行四边形的面积:等于底和高的积,即S□ABCD= ,
其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。
平行四边形的判定:(5种,3边1角1对角线)
从边看:有两组对边分别 的四边形是平行四边形。
两组对边分别 的四边形是平行四边形
一组对边 的四边形是平行四边形
从对角线看:对角线 的四边形是平行四边形
从角看:两组对角 的四边形是平行四边形。
三角形的中位线:连接三角形两边 的线段叫做三角形的中位线
三角形中位线定理:三角形的中位线 三角形的第三边,且等于第三边的 。
特殊的平行四边形
矩形:有一个角是 的平行四边形叫做矩形,也说是长方形。
矩形的性质:
矩形的四个角都是 ;
矩形的对角线 ;
特别提示:直角三角形斜边上的中线等于 ;
矩形具有平行四边形的一切性质
矩形的判定方法(3种)
有一个角是 的平行四边形是矩形;
对角线 的平行四边形是矩形;
有三个角是 的四边形是矩形。
菱形:有一组邻边 的平行四边形叫做菱形。
菱形性质:
菱形的四条边都 ;
菱形的两条对角线 ,并且每一条对角线 。
菱形的判定方法: (3种)
一组邻边 的平行四边形是菱形;
对角线 的平行四边形是菱形;
四条边 的四边形是菱形。
菱形的面积等于 ,也可用平行四边形的面积方法计算,即底和高的积。
正方形:
定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
性质:正方形的四边相等,对边平行,邻边垂直;
正方形的 ,每条对角线 ;
正方形的四个角都是 。
正方形判定:
有一组邻边 且有一个角是 的平行四边形是正方形。
一组邻边 的矩形是正方形;
有一个角是 的菱形是正方形。
矩形、菱形、正方形都是 图形。
矩形的对称轴为其对边中点所在的直线;
菱形的对称轴是其对角线所在的直线;
正方形的对称轴为其对边中点所在的直线或对角线所在的直线。
中点四边形问题:
任意四边形四边中点围成的四边形为 ;
矩形四边中点围成的四边形为 ;
菱形四边中点围成的四边形为 ;
对角线相等的四边形的四边中点围成的四边形为 ;
对角线垂直的四边形的四边中点围成的四边形为 .
探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法
一次函数 知识点
函数
变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
函数:一般的,在一个变化过程中,如果有两个变量 ,并且对于x的每一个 ,
y都有 与其对应,那么我们就把x称为 ,把y称为 ,y是x的函数。
*判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应
定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:
(1)关系式为整式时,函数定义域为 ;
(2)关系式含有分式时,分式的 ;
(3)关系式含有二次根式时,被开放方数 ;
(4)关系式中含有指数为零的式子时,底数 ;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
描点法画函数图形的一般步骤
第一步: (表中给出一些自变量的值及其对应的函数值);
第二步: (在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步: (按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法
法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数
一次函数的定义
一般地,形如 (k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
⑴一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当b=1,k≠0时,y=kx仍是一次函数.
⑶当b=0,k=0时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零
当k>0时,直线y=kx经过 象限,从左向右上升,即随x的增大y ;
当k0时,图像经过 象限;k0,y随x的增大而 ;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而 ;k0时,将直线y=kx的图象向 平移b个单位;
当b0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;
当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;
当b
相关试卷
这是一份第20章《数据的分析》——【期末复习】八年级数学下册章节知识点梳理(人教版),文件包含第20章数据的分析教师版docx、第20章数据的分析学生版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份第17章《勾股定理》——【期末复习】八年级数学下册章节知识点梳理(人教版),文件包含第17章勾股定理教师版docx、第17章勾股定理学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份北师大版初中数学章节复习 8年级下册 期末模拟卷(一)(教师版+学生版),文件包含北师大版初中数学章节复习8年级下册期末模拟卷一学生版doc、北师大版初中数学章节复习8年级下册期末模拟卷一教师版含解析doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。